Advertisement

Objective QoE Models

  • Vlado MenkovskiEmail author
Chapter
  • 279 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

QoE is a metric that relates to our subjective expectations, and even though these expectations are not objectively measurable, many factors that contribute to them are. For example we can measure the loss of IP packets in the network and make an estimation on the effect that this will have on QoE. Similarly, we can measure the amount of signal degradation that a lossy compression process inflicts on the content. These measurements do not convey the exact difference between the expected and the delivered quality in a general case, but for more specific uses they can provide a good indication. The models that contain objectively collected measurements of factors that affect QoE are referred to as objective QoE models. This chapter discusses different objective QoE models and how they can be a part of a QoE management framework.

Keywords

Mean Square Error Video Quality Image Quality Assessment Contrast Sensitivity Function Video Quality Assessment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Winkler, P. Mohandas, The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Trans. Broadcast. 54(3), 660–668 (2008). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4550731
  2. 2.
    G. Exarchakos, V. Menkovski, L. Druda, A. Liotta, Network analysis on Skype end-to-end video quality. Int. J. Pervasive Comput. Commun. 11(1) (Emerald, 2015). http://www.emeraldinsight.com/doi/abs/10.1108/IJPCC-08-2014-0044
  3. 3.
    G. Exarchakos, L. Druda, V. Menkovski, P. Bellavista, A. Liotta, Skype resilience to high motion videos. Int. J. Wavelets, Multiresolut. Inf. Process. 11(3) (2013). http://dx.doi.org/10.1142/S021969131350029X
  4. 4.
    F. Agboma, A. Liotta, Quality of Experience Management in Mobile Content Delivery Systems, J. Telecommun. Syst. (special issue on the Quality of Experience issues in Multimedia Provision) 49(1), 85–98 (2012). doi: 10.1007/s11235-010-9355-6
  5. 5.
    M. Alhaisoni, A. Liotta, M. Ghanbari, Scalable P2P video streaming. Int. J. Bus. Data Commun. Netw. 6(3), 49-65 (2010). doi: 10.4018/jbdcn.2010070103, ISSN:1548-0631
  6. 6.
    V. Menkovski, G. Exarchakos, A. Liotta, A. Cuadra Sánchez, Quality of experience models for multimedia streaming, Int. J. Mob. Comput. Multimedia Commun. 2(4), 1–20 (IGI Global, Oct–Dec 2010). www.igi-global.com/ijmcmc/, doi: 10.4018/jmcmc.2010100101, ISSN:1937-9412
  7. 7.
    A. Liotta, L. Druda, G. Exarchakos, V. Menkovski, Quality of experience management for video streams: the case of Skype, in Proceedings of the 10th International Conference on Advances in Mobile Computing and Multimedia, Bali, Indonesia, 3–5 Dec 2012 (ACM). doi:http://dx.doi.org/10.1145/2428955.2428977
  8. 8.
    J. Okyere-Benya, M. Aldiabat, V. Menkovski, G. Exarchakos, A. Liotta, Video quality degradation on IPTV networks, in Proceedings of International Conference on Computing, Networking and Communications, Maui, Hawaii, USA, 30 Jan–2 Feb 2012 (IEEE)Google Scholar
  9. 9.
    V. Menkovski, G. Exarchakos, A. Liotta, Online learning for quality of experience management, in Proceedings of The annual machine learning conference of Belgium and The Netherlands, Leuven, Belgium, 27th–28th May 2010. http://dtai.cs.kuleuven.be/events/Benelearn2010/submissions/benelearn2010_submission_20.pdf
  10. 10.
    V. Menkovski, G. Exarchakos, A. Cuadra-Sanchez, A. Liotta, Measuring quality of experience on a commercial mobile TV platform, in Proceedings of the 2nd International Conference on Advances in Multimedia, Athens, Greece, 13–19 June 2010 (IEEE)Google Scholar
  11. 11.
    V. Menkovski, G. Exarchakos, A. Liotta, Online QoE prediction, in Proceedings of the 2nd IEEE International Workshop on Quality of Multimedia Experience, Trondheim, Norway, 21–23 June 2010 (IEEE)Google Scholar
  12. 12.
    V. Menkovski, A. Oredope, A. Liotta, A. Cuadra-Sanchez, Predicting quality of experience in multimedia streaming, in Proceedings of the 7th International Conference on Advances in Mobile Computing and Multimedia, Kuala Lumpur, Malaysia, 14–16th Dec 2009 (ACM). ISBN:978-1-60558-659-5, http://dl.acm.org/citation.cfm?id=1821766
  13. 13.
    F. Agboma, M. Smy, A. Liotta, QoE analysis of a peer-to-peer television system, in Proceedings of the International Conference on Telecommunications, Networks and Systems. Amsterdam, Netherlands, 22–24 July 2008Google Scholar
  14. 14.
    F. Agboma, A. Liotta, QoE-aware QoS Management, in Proceedings of the 6th International Conference on Advances in Mobile Computing and Multimedia. Linz, Austria, 24–26 Nov 2008Google Scholar
  15. 15.
    F. Agboma, A. Liotta, Managing the user’s quality of experience, in Proceedings of the second IEEE/IFIP International Workshop on Business-driven IT Management (BDIM 2007), Munich, Germany, 21th May 2007 (IEEE)Google Scholar
  16. 16.
    F. Agboma, A. Liotta, User-centric assessment of mobile content delivery, in Proceedings of the 4th International Conference on Advances in Mobile Computing and Multimedia, Yogyakarta, Indonesia, 4–6 Dec 2006Google Scholar
  17. 17.
    S. Chikkerur, V. Sundaram, M. Reisslein, L. Karam, Objective video quality assessment methods: a classification, review, and performance comparison. IEEE Trans. Broadcast. 57(2), 165–182 (2011)CrossRefGoogle Scholar
  18. 18.
    V. Menkovski, A. Liotta, QoE for mobile streaming, in Mobile Multimedia—User and Technology Perspectives, ed. by D. Tjondronegoro (InTech, 2012). http://www.intechopen.com/books/mobile-multimedia-user-and-technology-perspectives/qoe-for-mobile-streaming
  19. 19.
    P. Teo, D. Heeger, Perceptual image distortion, in Proceedings of IEEE International Conference on Image Processing. ICIP-94, vol. 2 (IEEE, 1994), pp. 982–986Google Scholar
  20. 20.
    M. Eckert, A. Bradley, Perceptual quality metrics applied to still image compression. Signal Process. 70(3), 177–200 (1998)CrossRefzbMATHGoogle Scholar
  21. 21.
    A. Eskicioglu, P. Fisher, Image quality measures and their performance. IEEE Trans. Commun. 43(12), 2959–2965 (1995)CrossRefGoogle Scholar
  22. 22.
    B. Girod, What’s Wrong with Mean-Squared Error? Digital Images and Human Vision (MIT Press, Cambridge, 1993), pp. 207–220Google Scholar
  23. 23.
    Z. Wang, A. Bovik, L. Lu, Why is image quality assessment so difficult? in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2002, vol. 4 (IEEE, 2002), pp. IV–3313Google Scholar
  24. 24.
    Q. Huynh-Thu, M. Ghanbari, Scope of validity of psnr in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)CrossRefGoogle Scholar
  25. 25.
    F. Pan, X. Lin, S. Rahardja, K. Lim, Z. Li, D. Wu, S. Wu, Fast mode decision algorithm for intraprediction in h. 264/avc video coding. IEEE Trans. on Circuits Syst. Video Technol. 15(7), 813–822 (2005)Google Scholar
  26. 26.
    Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  27. 27.
    Z. Wang, L. Lu, A. Bovik, Video quality assessment based on structural distortion measurement. Signal Process. Image Commun. 19(2), 121–132 (2004)CrossRefGoogle Scholar
  28. 28.
    M. Pinson, S. Wolf, A new standardized method for objectively measuring video quality. IEEE Trans. Broadcast. 50(3), 312–322 (2004)CrossRefGoogle Scholar
  29. 29.
    K. Seshadrinathan, A. Bovik, Motion-based perceptual quality assessment of video, in IS&T/SPIE Electronic Imaging (International Society for Optics and Photonics, 2009), pp. 72 400X–72 400XGoogle Scholar
  30. 30.
    R. Mehrotra, K. Namuduri, N. Ranganathan, Gabor filter-based edge detection. Patt. Recogn. 25(12), 1479–1494 (1992)CrossRefGoogle Scholar
  31. 31.
    I. Gunawan, M. Ghanbari, Reduced-reference video quality assessment using discriminative local harmonic strength with motion consideration. IEEE Trans. Circuits Syst. Video Technol. 18(1), 71–83 (2008)CrossRefGoogle Scholar
  32. 32.
    L. Ma, S. Li, K. Ngan, Reduced-Reference Video Quality Assessment of Compressed Video Sequences (2012)Google Scholar
  33. 33.
    A. Reibman, V. Vaishampayan, Quality monitoring for compressed video subjected to packet loss, in Proceedings of International Conference on Multimedia and Expo, 2003. ICME’03. 2003, vol. 1 (IEEE, 2003) pp. I–17Google Scholar
  34. 34.
    S. Kanumuri, P. Cosman, A. Reibman, V. Vaishampayan, Modeling packet-loss visibility in mpeg-2 video. IEEE Trans. Multimedia 8(2), 341–355 (2006)CrossRefGoogle Scholar
  35. 35.
    A. Liotta, D. Constantin Mocanu, V. Menkovski, L. Cagnetta, G. Exarchakos, Instantaneous video quality assessment for lightweight devices, in Proceedings of the 11th International Conference on Advances in Mobile Computing and Multimedia, Vienna, Austria, 2–4 Dec 2013 (ACM). http://dx.doi.org/10.1145/2536853.2536903
  36. 36.
    D.C. Mocanu, G. Exarchakos, H.B. Ammar, A. Liotta, Reduced reference image quality assessment via boltzmann machines, in Proceedings of the 3rd IEEE/IFIP IM 2015 International Workshop on Quality of Experience Centric Management, Ottawa, Canada, 11–15 May 2015 (IEEE)Google Scholar
  37. 37.
    D.C. Mocanu, G. Exarchakos, A. Liotta, Deep learning for objective quality assessment of 3D images, in Proceedings of IEEE International Conference on Image Processing, Paris, France, 27–30 Oct 2014 (IEEE)Google Scholar
  38. 38.
    M. Torres Vega, E. Giordano, D. C. Mocanu, D. Tjondronegoro, A. Liotta, Cognitive no-reference video quality assessment for mobile streaming services, in Proceedings of the 7th International Workshop on Quality of Multimedia Experience, Messinia, Greece, 26–29 May 2015 (IEEE) (http://www.qomex.org)
  39. 39.
    M. Torres Vega, D. Constantin Mocanu, R. Barresi, G. Fortino, A. Liotta, Cognitive streaming on android devices, in Proceedings of the 1st IEEE/IFIP IM 2015 International Workshop on Cognitive Network & Service Management, Ottawa, Canada, 11–15 May 2015 (IEEE). http://www.cogman.org
  40. 40.
    D.C. Mocanu, A. Liotta, A. Ricci, M. Torres Vega, G. Exarchakos, When does lower bitrate give higher quality in modern video services?, in Proceedings of the 2nd IEEE/IFIP International Workshop on Quality of Experience Centric Management, Krakow, Poland, 9 May 2014 (IEEE). http://dx.doi.org/10.1109/NOMS.2014.6838400
  41. 41.
    M. Torres Vega, S. Zou, D. Constantin Mocanu, E. Tangdiongga, A.M.J. Koonen, A. Liotta, End-to-end performance evaluation in high-speed wireless networks, in Proceedings of the 10th International Conference on Network and Service Management, Rio de Janeiro, Brazil, 17–21 Nov 2014 (IEEE)Google Scholar
  42. 42.
    D. Constantin Mocanu, G. Santandrea, W. Cerroni, F. Callegati, A. Liotta, Network performance assessment with quality of experience benchmarks, in Proceedings of the 10th International Conference on Network and Service Management, Rio de Janeiro, Brazil, 17–21 Nov 2014 (IEEE)Google Scholar
  43. 43.
    G. Exarchakos, V. Menkovski, A. Liotta, Can Skype be used beyond video calling? In Proceedings of the 9th International Conference on Advances in Mobile Computing and Multimedia, Ho Chi Minh City, Vietnam, 5–7 Dec 2011 (ACM)Google Scholar
  44. 44.
    M. Alhaisoni, A. Liotta, M. Ghanbari, Resource-awareness and trade-off optimization in P2P video streaming. Int. J. Adv. Media Commun. (special issue on High-Quality Multimedia Streaming in P2P Environments) 4(1), 59–77 (Inderscience Publishers, 2010). doi: 10.1504/IJAMC.2010.030005, ISSN:1741-8003
  45. 45.
    M. Alhaisoni, A. Liotta, Characterization of signalling and traffic in joost. J. P2P Netw. Appl. (special issue on Modelling and Applications of Computational P2P) 2 75–83 (Springer, 2009). doi: 10.1007/s12083-008-0015-5, ISSN:1936-6450
  46. 46.
    F. Agboma, A. Liotta, Addressing user expectations in mobile content delivery. J. Mob. Inf. Syst. (special issue on Improving Quality of Service in Mobile Information Systems), 3(3), 153–164 (IOS Press, 2007)Google Scholar
  47. 47.
    D. Taubman, M. Marcellin, M. Rabbani, Jpeg 2000: image compression fundamentals, standards and practice. J. Electro. Imag. 11(2), 286–287 (2002)CrossRefGoogle Scholar
  48. 48.
    F. Pereira, T. Ebrahimi, The MPEG-4 Book (Prentice Hall, 2002)Google Scholar
  49. 49.
    D. Taubman, M. Marcellin, JPEG2000: Image Compression Fundamentals, Practice and Standards (Kluwer Academic Publishers, Massachusetts, 2002)CrossRefGoogle Scholar
  50. 50.
    Z. Liu, L. Karam, A. Watson, Jpeg 2000 encoding with perceptual distortion control. IEEE Trans. Image Process. 15(7), 1763–1778 (2006)CrossRefGoogle Scholar
  51. 51.
    F.A. Kingdom, P. Whittle, Contrast discrimination at high contrasts reveals the influence of local light adaptation on contrast processing. Vision Res. 36(6), 817–829 (1996)CrossRefGoogle Scholar
  52. 52.
    J. Shapiro, Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41(12), 3445–3462 (1993)CrossRefzbMATHGoogle Scholar
  53. 53.
    J. Li, Visual progressive coding, in SPIE Proceedings Series (Society of Photo-Optical Instrumentation Engineers, 1998), pp. 1143–1154Google Scholar
  54. 54.
    N. Kamaci, Y. Altunbasak, R. Mersereau, Frame bit allocation for the h. 264/avc video coder via cauchy-density-based rate and distortion models. IEEE Trans. Circuits Syst. Video Technol. 15(8), 994–1006 (2005)Google Scholar
  55. 55.
    K. Ramchandran, A. Ortega, M. Vetterli, Bit allocation for dependent quantization with applications to multiresolution and mpeg video coders. IEEE Trans. Image Process. 3(5), 533–545 (1994)CrossRefGoogle Scholar
  56. 56.
    J. Ribas-Corbera, S. Lei, Rate control in dct video coding for low-delay communications. IEEE Trans. Circuits Syst. Video Technol. 9(1), 172–185 (1999)CrossRefGoogle Scholar
  57. 57.
    Y. Kim, Z. He, S. Mitra, A novel linear source model and a unified rate control algorithm for h. 263/mpeg-2/mpeg-4 in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001. (ICASSP’01), vol. 3 (IEEE, 2001) pp. 1777–1780Google Scholar
  58. 58.
    Z. He, Y. Kim, S. Mitra, Low-delay rate control for dct video coding via \(\rho \)-domain source modeling. IEEE Trans. Circuits Syst. Video Technol. 11(8), 928–940 (2001)CrossRefGoogle Scholar
  59. 59.
    V. Menkovski, G. Exarchakos, A. Liotta, The value of relative quality in video delivery. J. Mob. Multimedia 7(3), 151–162 (2011)Google Scholar
  60. 60.
    V. Menkovski, G. Exarchakos, A. Cuadra-Sanchez, A. Liotta, Estimations and remedies for quality of experience in multimedia streaming, in Proceedings of the 3rd International Conference on Advances in Human-Oriented and Personalized Mechanisms, Technologies, and Services, Nice, France, 22–27 Aug 2010 (IEEE)Google Scholar
  61. 61.
    V. Menkovski, A. Liotta, Intelligent control for adaptive video streaming, in Proceedings of the International Conference on Consumer Electronics, Las Vegas, US, 11–14 Jan 2013 (IEEE). http://dx.doi.org/10.1109/ICCE.2013.6486825
  62. 62.
    V. Menkovski, G. Exarchakos, A. Liotta, Tackling the sheer scale of subjective qoe, in Mobile Multimedia Communications (Springer, 2012), pp. 1–15Google Scholar
  63. 63.
    V. Menkovski, G. Exarchakos, A. Liotta, Machine learning approach for quality of experience aware networks, in Proceedings of Computational Intelligence in Networks and Systems, Thessaloniki, Greece, 24–26 Nov 2010 (IEEE)Google Scholar
  64. 64.
    V. Menkovski, A. Oredope, A. Liotta, A. Cuadra-Sanchez, Optimized online learning for QoE prediction, in Proceedings of the 21st Benelux Conference on Artificial Intelligence, Eindhoven, The Netherlands, 29–30 Oct 2009. http://wwwis.win.tue.nl/bnaic2009/proc.html, ISSN:1568–7805
  65. 65.
    A. Webster, C. Jones, M. Pinson, S. Voran, S. Wolf, An objective video quality assessment system based on human perception. SPIE Hum. Vis. Vis. Process. Digit. Display IV 1993, 15–26 (1913)Google Scholar
  66. 66.
    N. Kanopoulos, N. Vasanthavada, R. Baker, Design of an image edge detection filter using the sobel operator. IEEE J. Solid-State Circuits 23(2), 358–367 (1988)CrossRefGoogle Scholar
  67. 67.
    J. Hu, H. Wildfeuer, Use of content complexity factors in video over ip quality monitoring, in International Workshop on Quality of Multimedia Experience, QoMEx 2009 (IEEE, 2009) pp. 216–221Google Scholar
  68. 68.
    K. Seshadrinathan, R. Soundararajan, A. Bovik, L. Cormack, Study of subjective and objective quality assessment of video. IEEE Trans. Image Process. 19(6), 1427–1441 (2010)MathSciNetCrossRefGoogle Scholar
  69. 69.
    K. Seshadrinathan, R. Soundararajan, A. Bovik, L. Cormack, A subjective study to evaluate video quality assessment algorithms, in SPIE Proceedings Human Vision and Electronic Imaging, vol. 7527 (Citeseer, 2010)Google Scholar
  70. 70.
    T. Wiegand, G. Sullivan, G. Bjontegaard, A. Luthra, Overview of the h. 264/avc video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)Google Scholar
  71. 71.
    NTIA, Video quality metric (vqm) software (2012). http://www.its.bldrdoc.gov/resources/video-quality-research/software.aspx
  72. 72.
    K. Seshadrinathan, R. Soundararajan, A. Bovik, L. Cormack, A Subjective Study to Evaluate Video Quality Assessment Algorithms, vol. 7527 (2010)Google Scholar
  73. 73.
    V. Menkovski, A. Liotta, Adaptive psychometric scaling for video quality assessment. Signal Proces. Image Commun. (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Philips ResearchEindhovenThe Netherlands

Personalised recommendations