Skip to main content

Phytophthora megakarya, a Causal Agent of Black Pod Rot in Africa

  • Chapter
  • First Online:

Abstract

In most parts of the world where Theobroma cacao is grown, Phytophthora palmivora is the major concern for causing black pod rot (BPR). Phytophthora megakarya, on the other hand, occurs only in Africa, but represents a major threat to cacao production, the countries of West Africa being the largest producers of cacao in the world. Since cacao did not originate in Africa, P. megakarya obviously only recently (likely prior to 1960) added cacao as a host and this new encounter has resulted in the most severe form of BPR worldwide. Although P. megakarya and P. palmivora are related, both being grouped in clade 4 in current Phytophthora diversity studies, P. megakarya has a distinct chromosomal composition and adaptations that make it particularly aggressive on cacao. P. megakarya has environmental requirements (temperature and rainfall) similar to cacao, and its ability to survive in soil and reinfect cacao pods through inoculum originating in the soil makes it particularly difficult to manage. Not only does P. megakarya survive in the soil for long periods, it also survives on the roots of cacao and other plant/tree species, many of which are cocultivated with cacao. Scientists have continued to make progress in understanding P. megakarya as a pathogen and have developed management tools for the disease it causes. Unfortunately, management tools such as fungicides and labor-intensive sanitation efforts, although effective, can be costly and, in some cases, difficult to obtain/maintain. As a result, farmers have difficulty justifying their use. Efforts toward breeding for tolerance in the crop to P. megakarya-induced BPR are making progress and in the future new planting materials should be able to greatly reduce disease losses if deployed with sound disease management practices. An improved understanding of the pathogen and its interaction with cacao at all levels, especially the molecular level, the deployment of tolerant cacao planting materials, the standardization of screening tools for developing tolerance to disease and determining pathogen diversity, and the refinement and more consistent employment by farmers of management tools already available will be critical for limiting losses due to P. megakarya-induced black pod rot in the future. The containment of P. megakarya to areas where it already exists is critical to cacao production around the world.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addo-Fordjour, P., Gyimah Gyamfi, H., Fei-Baffoe, B., & Akrofi, A. Y. (2013). Impact of copper-based fungicide application on copper contamination of cocoa plants and soils in the Ahafo Ano North District, Ashanti region, Ghana. Ecology, Environment and Conservation, 19(2), 303–310.

    CAS  Google Scholar 

  • Aikpokpodion, P., Lajide, L., & Aiyesanmi, A. (2010). Heavy metals contamination in fungicide treated cocoa plantations in Cross River state, Nigeria. American-Eurasian Journal of Agricultural and Environmental Sciences, 8, 268–274.

    CAS  Google Scholar 

  • Akrofi, A. (2015). Phytophthora megakarya: A review on its status as a pathogen on cacao in West Africa. African Crop Science Journal, 23(1), 67–87.

    Google Scholar 

  • Akrofi, A. Y., Amoako-Atta, I., Assuah, M., & Asare, E. K. (2015). Black pod disease on cacao (Theobroma cacao, L) in Ghana: Spread of Phytophthora megakarya and role of economic plants in the disease epidemiology. Crop Protection, 72, 66–75.

    Article  Google Scholar 

  • Akrofi, A. Y., Govers, F., Awuah, R. T., & Raaijmakers, J. M. (2012). Exploiting microbial diversity in cocoa ecosystems in Ghana to control Phytophthora pod rot disease. Global Advanced Research Journal of Agricultural Science, 1(10), 305–308.

    Google Scholar 

  • Akrofi, A., & Opoku, I. (2003). Phytophthora invasion of cocoa pod and bean. Journal of the Ghana Science Association, 5(1), 8–14.

    Google Scholar 

  • Ali, S. S., Amoako-Attah, I., Bailey, R. A., Strem, M. D., Schmidt, M., Akrofi, A. Y., Surujdeo-Maharaj, S., Kolawole, O. O., Begoude, B. A. D., ten Hoopen, G. M., Goss, E., Phillips-Mora, W., Meinhardt, L. W., & Bailey, B. A. (2016). PCR-based identification of cacao black pod causal agents and identification of biological factors possibly contributing to Phytophthora megakarya’s field dominance in West Africa. Plant Pathology (In press).

    Google Scholar 

  • Appiah, A., Flood, J., Archer, S., & Bridge, P. (2004a). Molecular analysis of the major Phytophthora species on cocoa. Plant Pathology, 53(2), 209–219.

    Article  CAS  Google Scholar 

  • Appiah, A., Flood, J., Bridge, P., & Archer, S. (2003). Inter‐and intraspecific morphometric variation and characterization of Phytophthora isolates from cocoa. Plant Pathology, 52(2), 168–180.

    Article  Google Scholar 

  • Appiah, A. A., Opoku, I. Y., & Akrofi, A. Y. (2004b). Natural occurrence and distribution of stem cankers caused by Phytophthora megakarya and Phytophthora palmivora on cocoa. European Journal of Plant Pathology, 110(10), 983–990.

    Article  Google Scholar 

  • Argout, X., Fouet, O., Wincker, P., Gramacho, K., Legavre, T., Sabau, X., Risterucci, A. M., Da Silva, C., Cascardo, J., & Allegre, M. (2008). Towards the understanding of the cocoa transcriptome: Production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions. BMC genomics, 9, 512.

    Article  PubMed Central  PubMed  Google Scholar 

  • Arnold, A. E., & Herre, E. A. (2003). Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia, 95(3), 388–398.

    Article  PubMed  Google Scholar 

  • Asare-Nyako, A. & Bruce, R. (1982–1985). Cocoa Research Institute of Ghana Annual Report. In Report of the Cocoa Research Institute of Ghana, 1982/83-1984/85Tafo, Ghana.

    Google Scholar 

  • Awuah, R., & Frimpong, M. (2007). Investigation into the seed-borne nature and seed to seedling transmission of Phytophthora in cocoa. Journal of Science and Technology (Ghana), 27(1), 9–16.

    Article  Google Scholar 

  • Bae, H., Bowers, J. H., Tooley, P. W., & Bailey, B. A. (2005). NEP1 orthologs encoding necrosis and ethylene inducing proteins exist as a multigene family in Phytophthora megakarya, causal agent of black pod disease on cacao. Mycological Research, 109(12), 1373–1385.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, B. A., Bae, H., Strem, M. D., de Mayolo, G. A., Guiltinan, M. J., Verica, J. A., Maximova, S. N., & Bowers, J. H. (2005). Developmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 treatment and a compatible infection by Phytophthora megakarya. Plant Physiology and Biochemistry, 43(6), 611–622.

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt, E., & Grogan, R. (1982). Effect of soil matric potential on the formation and indirect germination of sporangia of Phytophthora parasitica, Phytophthora capsici, and Phytophthora cryptogea [Rots of tomatoes, Lycopersicon esculentum]. Phytopathology (USA), 72(5), 507–511.

    Article  Google Scholar 

  • Boccas, B. (1981). Interspecific crosses between closely related heterothallic Phytophthora species. Phytopathology, 71(1), 60–65.

    Article  Google Scholar 

  • Boudjeko, T., Djocgoue, P., Nankeu, J., Mbouobda, H., Omokolo, D., & El Hadrami, I. (2007). Luteolin derivatives and heritability of resistance to Phytophthora megakarya in Theobroma cacao. Australasian Plant Pathology, 36(1), 56–61.

    Article  CAS  Google Scholar 

  • Brasier, C. (1969). Formation of oospores in vivo by Phytophthora palmivora. Transactions of the British Mycological Society, 52(2), 273–279.

    Article  Google Scholar 

  • Brasier, C., & Griffin, M. (1979). Taxonomy of ‘Phytophthora palmivora’ on cocoa. Transactions of the British Mycological Society, 72(1), 111–143.

    Article  Google Scholar 

  • Brasier, C., Griffin, M. & Maddison, A. (1981).The Cocoa black pod Phytophthoras. In P. Gregory & A. Maddison (Eds.), Epidemiology of Phytophthora on cocoa in Nigeria. Final report of the International Cocoa Black Pod Research Project, Vol. Phytopathological paper 25, 18–30. Kew Surrey, England: Commonwealth Mycological Institute.

    Google Scholar 

  • Chee, K. (1973). Production, germination and survival of chlamydospores of Phytophthora palmivora from Hevea brasiliensis. Transactions of the British Mycological Society, 61(1), 21–26.

    Article  Google Scholar 

  • Cheesman, E. (1927). Fertilization and Embryogeny in Theobroma cacao, L. Annals of Botany, 1, 107–126.

    Google Scholar 

  • Cilas, C. (2006). Comparison of resistance to Phytophthora pod rot in a ring test using leaf disc inoculation at ten sites. Global Approaches to Cocoa Germplasm Utilization and Conservation, pp. 116–123

    Google Scholar 

  • Cooke, D., Drenth, A., Duncan, J., Wagels, G., & Brasier, C. (2000). A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genetics and Biology, 30(1), 17–32.

    Article  CAS  PubMed  Google Scholar 

  • CRIG (1979–1994).Cocoa Research Institute of Ghana annual reports. In Report of the Cocoa Research Institute of Ghana, 1979-1994 Tafo, Ghana.

    Google Scholar 

  • CRIG (1990–1991). Cocoa Research Institute of Ghana Annual Report. In Report of the Cocoa Research Institute of Ghana, 1990/91, 59-85 Tafo, Ghana: Cocoa Research Institute.

    Google Scholar 

  • Cunningham, R., & Arnold, P. (1962). The shade and fertiliser requirements of cacao (Theobroma cacao) in Ghana. Journal of the Science of Food and Agriculture, 13(4), 213–221.

    Article  CAS  Google Scholar 

  • Dakwa, J. (1974). The occurrence of Phytophthora palmivora (Butl) Butl in soil in Ghana. Ghana Journal of Agricultural Science, 7, 37–41.

    Google Scholar 

  • Dakwa, J. (1979–1982). Cocoa Research Institute of Ghana Annual Report. In Report of the Cocoa Research Institute of Ghana, 1979/80-1981-82, 165–167, Tafo, Ghana.

    Google Scholar 

  • Dakwa, J. (1984).Nationwide black pod survey. Joint CRIG/Cocoa Production Division Project. In Annual Report of the Cocoa Research Institute, Ghana, 1976/77–1978/79, p. 263 Tafo (Akim Abuakwa), Ghana: Cocoa Research Institute.

    Google Scholar 

  • Dakwa, J. (1987).A serious outbreak of black pod disease in a marginal area of Ghana. In Proceedings of the 10th International Cocoa Research Conference, pp. 447–451.

    Google Scholar 

  • Dakwa, J. (1988).Changes in the periods for attaining the cocoa black pod disease infection peaks in Ghana. In Proceedings of the 10th International Cocoa Research Conference, Santo Domingo, Dominican Republic, pp. 427–436.

    Google Scholar 

  • deAlmeida, A., & Valle, R. (2007). Ecophysiology of the cacao tree. Brazilian Journal of Plant Physiology, 19(4), 425–448.

    Article  CAS  Google Scholar 

  • Deberdt, P., Mfegue, C., Tondje, P., Bon, M., Ducamp, M., Hurard, C., Begoude, B., Ndoumbe-Nkeng, M., Hebbar, P., & Cilas, C. (2008). Impact of environmental factors, chemical fungicide and biological control on cacao pod production dynamics and black pod disease (Phytophthora megakarya) in Cameroon. Biological Control, 44(2), 149–159.

    Article  Google Scholar 

  • Dennis, J. & Konam, J. (1993).Phytophthora palmivora cultural control methods and their relationship to disease epidemiology on cocoa in Papua New Guinea. In Proceedings of the 11th international cocoa research conference, pp. 18–24.

    Google Scholar 

  • Dick, M. (2001). Straminipilous fungi: Systematics of the peronosporomycetes including accounts of the marine straminipilous protists, the plasmodiophorids and similar organisms, pp. 1–660.

    Google Scholar 

  • Djiekpor, E., Goka, K., Lucas, P., & Partiot, M. (1981). Cocoa black pod rot caused by Phytophthora sp. in Togo: Assessment and control strategies. Cafe Cacao The, 25(4), 263–268.

    CAS  Google Scholar 

  • Djiekpor, E., Partiot, M. & Lucas, P. (1982). Cacao black pod caused by Phytophthora sp. in Togo: Determination of causal species. In Proceedings 8th International Cocoa Research Conference, Cartagena, Colombia, 18 23 Oct 1981, pp. 473–478. Cocoa Producers’ Alliance.

    Google Scholar 

  • Djocgoue, P., Boudjeko, T., Mbouobda, H., Nankeu, D., El Hadrami, I., & Omokolo, N. (2007). Heritability of phenols in the resistance of Theobroma cacao against Phytophthora megakarya, the causal agent of black pod disease. Journal of Phytopathology, 155(9), 519–525.

    Article  CAS  Google Scholar 

  • Djocgoue, P. F., Mbouobda, H. D., Boudjeko, T., Effa, P. O., & Omokolo, D. N. (2012). Amino acids, carbohydrates and heritability of resistance in Theobroma cacao/Phythophtora megakarya interaction. Phytopathologia Mediterranea, 50(3), 370–383.

    Google Scholar 

  • Drenth, A. & Sendall, B. (2001). Practical guide to Detection and identification of Phytophthora. 1.0, pp. 1–41.

    Google Scholar 

  • Efombagn, M., Marelli, J., Ducamp, M., Cilas, C., Nyasse, S., & Vefonge, D. (2004). Effect of fruiting traits on the field resistance of cocoa (Theobroma cacao L.) clones to Phytophthora megakarya. Journal of Phytopathology, 152(10), 557–562.

    Article  Google Scholar 

  • Erselius, L. J., & Shaw, D. (1982). Protein and enzyme differences between Phytophthora palmivora and P. megakarya: Evidence for self-fertilization in pairings of the two species. Transactions of the British Mycological Society, 78(2), 227–238.

    Article  CAS  Google Scholar 

  • Evans, H. (1971). Transmission of Phytophthora pod rot of cocoa by invertebrates. Nature, 232, 346–347.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson, A., & Jeffers, S. (1999). Detecting multiple species of Phytophthora in container mixes from ornamental crop nurseries. Plant Disease, 83(12), 1129–1136.

    Article  Google Scholar 

  • Ferrin, D. M., & Mellinger, H. C. (1977). Control of Phytophthora wilt of azaleas with CGA 48988. Proceedings of the Florida State Horticultural Society, 90, 333–336.

    CAS  Google Scholar 

  • Fo, H., Oudemans, P., & Coffey, M. D. (1990). Mitochondrial and nuclear DNA diversity within six species of Phytophthora. Experimental Mycology, 14(1), 18–31.

    Article  Google Scholar 

  • Gisi, U., Zentmyer, G., & Klure, L. (1980). Production of sporangia by Phytophthora cinnamomi and P. palmivora in soils at different matric potentials. Phytopathology, 70(4), 301–306.

    Article  Google Scholar 

  • Gregory, P., Griffin, M., Maddison, A., & Ward, M. (1984). Cocoa black pod: A reinterpretation. Cocoa Growers’ Bulletin, 35, 5–22.

    Google Scholar 

  • Gregory, P. H., & Maddison, A. (1981). Epidemiology of Phytophthora on cocoa in Nigeria. Phytopathological Paper, 25, 23–26.

    Google Scholar 

  • Gunderson, J. H., Elwood, H., Ingold, A., Kindle, K., & Sogin, M. L. (1987). Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proceedings of the National Academy of Sciences, 84(16), 5823–5827.

    Article  CAS  Google Scholar 

  • Hislop, E. (1963). Studies on the chemical control of Phytophthora palmivora (Butl.) Butl. on Theobroma cacao L. in Nigeria. Annals of Applied Biology, 52(3), 465–480.

    Article  Google Scholar 

  • Hislop, E., & Park, P. (1962). Studies on the chemical control of Phytophthora palmivora (Butl.) Butl. on Theobroma cacao L. in Nigeria. Annals of Applied Biology, 50(1), 77–88.

    Article  CAS  Google Scholar 

  • Holmes, K., Evans, H., Wayne, S., & Smith, J. (2003). Irvingia, a forest host of the cocoa black‐pod pathogen, Phytophthora megakarya, in Cameroon. Plant Pathology, 52(4), 486–490.

    Article  Google Scholar 

  • Ivors, K., Garbelotto, M., Vries, I., Ruyter-Spira, C., Hekkert, B., Rosenzweig, N., & Bonants, P. (2006). Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Molecular Ecology, 15(6), 1493–1505.

    Article  CAS  PubMed  Google Scholar 

  • Iwaro, A., Sreenivasan, T., & Umaharan, P. (1997a). Foliar resistance to Phytophthora palmivora as an indicator of pod resistance in Theobroma cacao. Plant Disease, 81(6), 619–624.

    Article  Google Scholar 

  • Iwaro, A., Sreenivasan, T., & Umaharan, P. (1997b). Phytophthora resistance in cacao (Theobroma cacao): Influence of pod morphological characteristics. Plant Pathology, 46(4), 557–565.

    Article  Google Scholar 

  • Iwaro, A., Sreenivasan, T., & Umaharan, P. (1998). Cacao resistance to Phytophthora: Effect of pathogen species, inoculation depths and pod maturity. European Journal of Plant Pathology, 104(1), 11–15.

    Article  Google Scholar 

  • Kaosiri, T., & Zentmyer, G. A. (1980). Protein, esterase, and peroxidase patterns in the Phytophthora palmivora complex from cacao. Mycologia, 72, 988–1000.

    Article  CAS  Google Scholar 

  • Koné, Y. (1999).Etude de la structure actuelle des populations de Phytophthora spp., agents de la pourriture brune des cabosses du cacaoyer (Theobroma cacao L.) en Côte d’Ivoire. In DAA Thesis, Ecole Supérieure d’Agronomie, 111 Yamoussoukro, Côte d’Ivoire.

    Google Scholar 

  • Kong, P., Hong, C., Richardson, P. A., & Gallegly, M. E. (2003). Single-strand-conformation polymorphism of ribosomal DNA for rapid species differentiation in genus Phytophthora. Fungal Genetics and Biology, 39(3), 238–249.

    Article  CAS  PubMed  Google Scholar 

  • Kroon, L., Bakker, F., Van Den Bosch, G., Bonants, P., & Flier, W. (2004). Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology, 41(8), 766–782.

    Article  CAS  PubMed  Google Scholar 

  • Kumi, M., Wolffhechel, H., Hansen, H., & Mathur, S. (1996). Seed transmission of Phytophthora in cacao. Seed Science and Technology, 24(3), 593–595.

    Google Scholar 

  • Lanaud, C., Fouet, O., Clément, D., Boccara, M., Risterucci, A., Surujdeo-Maharaj, S., Legavre, T., & Argout, X. (2009). A meta–QTL analysis of disease resistance traits of Theobroma cacao L. Molecular Breeding, 24(4), 361–374.

    Article  Google Scholar 

  • Lee, S. B., & Taylor, J. W. (1992). Phylogeny of five fungus-like protoctistan Phytophthora species, inferred from the internal transcribed spacers of ribosomal DNA. Molecular Biology and Evolution, 9(4), 636–653.

    CAS  PubMed  Google Scholar 

  • Louise, N. W., Séverin, T. N., Raymond, F., Xavier, E. F., & Martine, D. (2011). Flavonoïd compounds synthesis by cocoa fruits (Theobroma cacao L.) in response to Phytophthora megakarya infection. Research Journal of Agriculture and Biological Sciences, 7(3), 335–342.

    Google Scholar 

  • Luterbacher, M. C. & Akrofi, A. Y. (1994). The current status and distribution of Phytophthora megakarya in Ghana. In Proceedings of the XIth International Cocoa Research Conference, 29–35 Yamoussoukro, Côte d’Ivoire: Cocoa Producers Alliance, Lagos, Nigeria.

    Google Scholar 

  • Maddison, A. & Griffin, M. (1981). Detection and movement of inoculum. Phytopathological Papers: 31–49.

    Google Scholar 

  • Martin, F. N., & Tooley, P. W. (2004). Identification of Phytophthora isolates to species level using restriction fragment length polymorphism analysis of a polymerase chain reaction-amplified region of mitochondrial DNA. Phytopathology, 94(9), 983–991.

    Article  CAS  PubMed  Google Scholar 

  • McGregor, A. (1984). Comparison of cuprous oxide and metalaxyl with mixtures of these fungicides for the control of Phytophthora pod rot of cocoa. Plant Pathology, 33(1), 81–87.

    Article  CAS  Google Scholar 

  • McMahon, P. & Purwantara, A. (2004). 6.1 Phytophthora on cocoa. Diversity and Management of Phytophthora in Southeast Asia: 104–114.

    Google Scholar 

  • Mfegue, C., Herail, C., Adreit, H., Mbenoun, M., Techou, Z., Ten Hoopen, M., Tharreau, D., & Ducamp, M. (2012). Microsatellite markers for population studies of Phytophthora megakarya (Pythiaceae), a cacao pathogen in Africa. American Journal of Botany, 99(9), e353–e356.

    Article  CAS  PubMed  Google Scholar 

  • Motamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One, 3(10), e3311.

    Article  PubMed Central  PubMed  Google Scholar 

  • Naganeeswaran, S. A., Subbian, E. A., & Ramaswamy, M. (2012). Analysis of expressed sequence tags (ESTs) from cocoa (Theobroma cacao L) upon infection with Phytophthora megakarya. Bioinformation, 8(2), 65–69.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ndoumbe-Nkeng, M., Cilas, C., Nyemb, E., Nyasse, S., Bieysse, D., Flori, A., & Sache, I. (2004). Impact of removing diseased pods on cocoa black pod caused by Phytophthora megakarya and on cocoa production in Cameroon. Crop Protection, 23(5), 415–424.

    Article  Google Scholar 

  • Ndoumbe-Nkeng, M., Efombagn, M., Nyasse, S., Nyemb, E., Sache, I., & Cilas, C. (2009). Relationships between cocoa Phytophthora pod rot disease and climatic variables in Cameroon. Canadian Journal of Plant Pathology, 31(3), 309–320.

    Article  Google Scholar 

  • Ndoumou, D. O., Djocgoue, P., Nana, L., & Debost, M. (1995). Variation and inheritance of peroxidase activity and phenol and saccharide content in cacao in relation to susceptibility to black pod disease. Biologia Plantarum, 37(3), 429–436.

    Article  CAS  Google Scholar 

  • Ndoumou, O. D., Ndzomo, T. G., & Djocgoue, P. (1996). Changes in carbohydrate, amino acid and phenol contents in cocoa pods from three clones after infection with Phytophthora megakarya Bra. and Grif.. Annals of Botany, 77(2), 153–158.

    Article  CAS  Google Scholar 

  • Nichols, R. (1961). Xylem occlusions in the fruit of cacao (Theobroma cacao) and their relation to cherelle wilt. Annals of Botany, 25(100), 463–475.

    Google Scholar 

  • Nichols, R. (1964). Studies of fruit development of cacao (Theobroma cacao) in relation to cherelle wilt I. development of the pericarp. Annals of Botany, 28(4), 619–635.

    CAS  Google Scholar 

  • Nwaga, D., Normand, M. I., & Citharel, J. (1990). Identification and differentiation of Phytophthora by electrophoresis of mycelial proteins and isoenzymes. EPPO Bulletin, 20(1), 35–45.

    Article  Google Scholar 

  • Nyadanu, D., Akromah, R., Adomako, B., Kwoseh, C., Lowor, S., Dzahini-Obiatey, H., Akrofi, A., Owusu Ansah, F., & Assuah, M. (2012). Histological mechanisms of resistance to black pod disease in cacao (Theobroma cacao L.). Journal of Plant Sciences, 7, 1–16.

    Article  Google Scholar 

  • Nyasse, S., Grivet, L., Risterucci, A., Blaha, G., Berry, D., Lanaud, C., & Despreaux, D. (1999). Diversity of Phytophthora megakarya in Central and West Africa revealed by isozyme and RAPD markers. Mycological Research, 103(10), 1225–1234.

    Article  CAS  Google Scholar 

  • Omokolo, N., Nankeu, D., Niemenak, N., & Boudjeko, T. (2003).Variation of b-1,3-glucanase, chitinase and polyphenoloxidase activities in cacao pods upon Phytophthora megakarya inoculation. In African Crop Science Journal, Vol. 11: African Crop Science Society.

    Google Scholar 

  • Ondobo, M. L., Onomo, P. E., Djocgoue, P. F., Ndjaga, J. M., Boudjeko, T., & Ndoumou, D. O. (2014). Phenolic content and heritability of resistance in four hybrid populations of Theobroma cacao L. after leaves inoculation with Phytophthora megakarya Bras. et Grif.. International Journal of Biological and Chemical Sciences, 8(1), 17–30.

    Article  Google Scholar 

  • Oome, S., Raaymakers, T. M., Cabral, A., Samwel, S., Böhm, H., Albert, I., Nürnberger, T., & Van den Ackerveken, G. (2014). Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proceedings of the National Academy of Sciences, 111(47), 16955–16960.

    Article  CAS  Google Scholar 

  • Opoku, I., Akrofi, A., & Appiah, A. (2002). Shade trees are alternative hosts of the cocoa pathogen Phytophthora megakarya. Crop Protection, 21(8), 629–634.

    Article  Google Scholar 

  • Opoku, I., Appiah, A., Akrofi, A., & Owusu, G. (2000). Phytophthora megakarya: A potential threat to the cocoa industry in Ghana. Ghana Journal of Agricultural Science, 33(2), 237–248.

    Article  Google Scholar 

  • Opoku, I., Assuah, M., & Aneani, F. (2007). Management of black pod disease of cocoa with reduced number of fungicide application and crop sanitation. African Journal of Agricultural Research, 2(11), 601–604.

    Google Scholar 

  • Panabieres, F., Marais, A., Trentin, F., Bonnet, P., & Ricci, P. (1989). Repetitive DNA polymorphism analysis as a tool for identifying Phytophthora species. Phytopathology, 79(10), 1105–1109.

    Article  CAS  Google Scholar 

  • Pokou, N., N’Goran, J., Eskes, A., & Sangaré, A. (2009). Cocoa farm survey in Côte d’Ivoire. In International Workshop on Cocoa Breeding for Farmers’ Needs, p. 26.

    Google Scholar 

  • Sanogo, S., & Ji, P. (2013). Water management in relation to control of Phytophthora capsici in vegetable crops. Agricultural Water Management, 129, 113–119.

    Article  Google Scholar 

  • Sansome, E., Brasier, C., & Griffin, M. (1975). Chromosome size differences in Phytophthora palmivora, a pathogen of cocoa. Nature, 255, 704–705.

    Article  CAS  PubMed  Google Scholar 

  • Sansome, E., Brasier, C., & Sansome, F. (1979). Further cytological studies on the ‘L’ and ‘S’ types of Phytophthora from cocoa. Transactions of the British Mycological Society, 73(2), 293–302.

    Article  Google Scholar 

  • Sanusi, R. & Oloyede, A. (2007). Shade management on cocoa farm in Nigeria: effect on pod production on on-station’s plots. In 8th African Crop Science Society Conference, Vol. 8, 1983-1986 El-Minia, Egypt, 27–31 October 2007: African Crop Science Society.

    Google Scholar 

  • Simo, C. D., Mboubda, P. F., Effa, H. D., Boudjeko, P. O., Ndiang, T. Z., & Omokolo, D. N. (2014). Assessing relationship between phenolic compounds and resistance to Phytophthora megakarya using two cocoa (Theobroma cacao) families. African Journal of Biotechnology, 13(29), 2956–2965.

    Article  Google Scholar 

  • Soberanis, W., Rıos, R., Arévalo, E., Zuniga, L., Cabezas, O., & Krauss, U. (1999). Increased frequency of phytosanitary pod removal in cacao (Theobroma cacao) increases yield economically in eastern Peru. Crop Protection, 18(10), 677–685.

    Article  Google Scholar 

  • Soh, P. T., Ndoumbè-Nkeng, M., Sache, I., Nguema, E. N., Gwet, H., & Chadœuf, J. (2013). Development stage-dependent susceptibility of cocoa fruit to pod rot caused by Phytophthora megakarya. European Journal of Plant Pathology, 135(2), 363–370.

    Article  Google Scholar 

  • Sonwa, D. J., Coulibaly, O., Weise, S. F., Adesina, A. A., & Janssens, M. J. (2008). Management of cocoa: Constraints during acquisition and application of pesticides in the humid forest zones of southern Cameroon. Crop Protection, 27(8), 1159–1164.

    Article  CAS  Google Scholar 

  • Stassen, J. H., & Van den Ackerveken, G. (2011). How do oomycete effectors interfere with plant life? Current Opinion in Plant Biology, 14(4), 407–414.

    Article  PubMed  Google Scholar 

  • Tchameni, S. N., Nwaga, D., Wakam, L. N., Ngonkeu, M., Leonard, E., Fokom, R., Kuaté, J., & Etoa, F. X. (2012). Growth enhancement, amino acid synthesis and reduction in susceptibility towards Phytophthora megakarya by arbuscular mycorrhizal fungi inoculation in cocoa plants. Journal of Phytopathology, 160(5), 220–228.

    Article  CAS  Google Scholar 

  • Ten Hoopen, G. M., Sounigo, O., Babin, R., Yede, Dikwe, G. & Cilas, C. (2011). Spatial and temporal analysis of a Phytophthora megakarya epidemic in a plantation in the centre region of Cameroon. In Proceedings of the 16th International Cocoa Research Conference, 16–21st November, 2009, pp. 683–687, Bali, Indonesia.

    Google Scholar 

  • Thines, M. (2014). Phylogeny and evolution of plant pathogenic oomycetes—A global overview. European Journal of Plant Pathology, 138(3), 431–447.

    Article  Google Scholar 

  • Thorold, C. (1959). Methods of controlling black pod disease (caused by Phytophthora palmivora) of Theobroma cacao in Nigeria. Annals of Applied Biology, 47(4), 708–715.

    Article  CAS  Google Scholar 

  • Turner, P. (1960). Strains of Phytophthora palmivora (Butl.) Butl. From Theobroma cacao L.: I. isolates from West Africa. Transactions of the British Mycological Society, 43(4), 665–667.

    Article  Google Scholar 

  • Turner, P., & Asomaning, E. (1962). Root infection of Theobroma cacao by Phytophthora palmivora. Tropological Agriculture (Trinidad), 39, 339–343.

    Google Scholar 

  • Urech, P., Schwinn, F. & Staub, T. (1977).CGA 48988 a novel fungicide for the control of late blight, downy mildews and related soil borne diseases. In Proceedings of the British Crop Protection Conference, Pests and Diseases, Vol. 1977, pp. 623–632.

    Google Scholar 

  • Ward, M., & Griffin, M. (1981). Soil phase of cocoa Phytophthora. In P. H. Gregory & A. C. Maddison (Eds.), Epidemiology of Phytophthora on cocoa in Nigeria (Vol. 25, pp. 50–61). Kew: Commonwealth Mycological Institute.

    Google Scholar 

  • West, J. (1936). Black pod of cocoa. Experimental control on native farms. In 11th Bulletin of Agricultural Department Nigeria, Vol. 11, pp. 1–11.

    Google Scholar 

  • Wharton, A. L. (1958). Strains of Phytophthora palmivora occurring in Ghana and Nigeria. Report West African Cocoa research Institute, 1956–1957.

    Google Scholar 

  • Widmer, T. L. (2014). Phytophthora palmivora. Forest Phytophthoras, 4(1), 3557.

    Article  Google Scholar 

  • Widmer, T. L. & Hebbar, P. K. (2013). Phytophthora megakarya. In Forest Phytophthoras, Vol. 3, p. 3386. Oregon State University.

    Google Scholar 

  • Widmer, T. L., & Laurent, N. (2006). Plant extracts containing caffeic acid and rosmarinic acid inhibit zoospore germination of Phytophthora spp. pathogenic to Theobroma cacao. European Journal of Plant Pathology, 115(4), 377–388.

    Article  CAS  Google Scholar 

  • Yuen, J., & Andersson, B. (2013). What is the evidence for sexual reproduction of Phytophthora infestans in Europe? Plant Pathology, 62(3), 485–491.

    Article  Google Scholar 

Download references

Acknowledgments

Work was funded by USDA ARS. References to a company and/or product by the USDA are only for the purposes of information and do not imply approval or recommendation of the product to the exclusion of others that may also be suitable. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan A. Bailey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bailey, B.A., Ali, S.S., Akrofi, A.Y., Meinhardt, L.W. (2016). Phytophthora megakarya, a Causal Agent of Black Pod Rot in Africa. In: Bailey, B., Meinhardt, L. (eds) Cacao Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-24789-2_8

Download citation

Publish with us

Policies and ethics