Skip to main content

Breeding for Disease Resistance in Cacao

  • Chapter
  • First Online:
Cacao Diseases

Abstract

Cacao production must increase in order to meet the projected rise in the demand for chocolate. Approximately one-third of global production is lost annually to diseases and insects. Four diseases account for the greatest losses worldwide: black pod, caused by four Phytophthora spp.; witches’ broom, caused by Moniliophthora perniciosa; cacao swollen shoot virus, caused by a member of the genus Badnavirus; and frosty pod, caused by Moniliophthora roreri. At the present time, only 30 % of material currently under cultivation is of improved varieties, therefore, there is an urgent need for the development of new, high-yielding, disease-resistant varieties. Sustainable production increases could be achieved if improved varieties were used by the farmers. Cacao breeding was started in Trinidad in the 1930s by F. J. Pound and within a few decades cacao research centers had been established in all the major cacao producing areas worldwide including West Africa and Southeast Asia. Pound and other researchers have made several expeditions to the Amazon to collect wild cacao germplasm. In addition to using the germplasm collected from the wild and farmers’ fields to find new sources of resistance genes, researchers have developed breeding programs that cross and select cacao genotypes in order to accumulate desirable genes for resistance, as well as good horticultural and quality traits. Recently, numerous molecular tools, including the genome sequences of two varieties of cacao, have been developed and/or made available to accelerate the breeding process. International private/public collaborations are in progress to identify candidate resistance genes, map these in the sequenced genomes, and develop molecular markers associated with these genes. Researchers will use these markers in genomics-assisted breeding programs to screen young cacao plants and select those with desirable traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adejumo, T. (2005). Crop protection strategies for major diseases of cocoa, coffee and cashew in Nigeria. African Journal of Biotechnology, 4(2), 143–150.

    CAS  Google Scholar 

  • Adomako, B. (2007). Causes and extent of yield losses in cocoa progenies. Tropical Science, 47(1), 22–25.

    Article  Google Scholar 

  • Adomako, B., Adu-Ampomah, Y., & Ollennu, L. (2006). Evaluation of resistance to cocoa swollen shoot virus (CSSV): Methods, problems and selections. In B. Eskes & Y. Efron (Eds.), Global approaches to cocoa germplasm utilization and conservation. Final report of the CFC/ICCO/IPGRI project on “Cocoa Germplasm Utilization and Conservation: A Global Approach” (1998-2004) (pp. 208–216). Amsterdam, The Netherlands/London, UK/Rome, Italy: CFC/ICCO/IPGRI.

    Google Scholar 

  • Adu‐Ampomah, Y., Owusu, G., Sackey, S., Padi, B., & Abdul‐Karimu, A. (1996). Use of gamma rays to induce mutants resistant to cocoa swollen shoot disease in Theobroma cacao L. Plant Breeding, 115(1), 74–76.

    Article  Google Scholar 

  • Agrios, G. N. (2005). Plant pathology. Boston, MA: Elsevier Academic Press.

    Google Scholar 

  • Aguilar, M., Resende, M., & Dias, L. (2000). Bases bioquímicas e fisiológicas da resistência a doenças. In L. Dias (Ed.), Melhoramento genético do cacaueiro (pp. 325–329). Viçosa: Funape-UFG, Editora Folha de Viçosa Ltda.

    Google Scholar 

  • Allegre, M., Argout, X., Boccara, M., Fouet, O., Roguet, Y., Bérard, A., et al. (2012). Discovery and mapping of a new expressed sequence tag-single nucleotide polymorphism and simple sequence repeat panel for large-scale genetic studies and breeding of Theobroma cacao L. DNA Research, 19(1), 23–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Allen, J., & Lass, R. (1983). London cocoa trade amazon project: Final report, phase 1. Cocoa Growers’ Bulletin, 34, 1–72.

    Google Scholar 

  • Almeida, C., Barriga, J., Machado, P., & Bartley, B. (1987). Evolução do programa de conservação dos recursos genéticos de cacau na Amazônia Brasileira. Boletim Técnico, 5, 108.

    Google Scholar 

  • Altshuler, D., Pollara, V. J., Cowles, C. R., Van Etten, W. J., Baldwin, J., Linton, L., et al. (2000). An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature, 407(6803), 513–516.

    Article  PubMed  CAS  Google Scholar 

  • Ambrosio, A. B., do Nascimento, L. C., Oliveira, B. V., Teixeira, P. J. P., Tiburcio, R. A., Thomazella, D. P. T., et al. (2013). Global analyses of Ceratocystis cacaofunesta mitochondria: From genome to proteome. BMC Genomics, 14(1), 91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Andebrhan, T., Almeida, L. d., & Nakayama, L. (1998). Resistência de Theobroma cacao L. a Crinipellis perniciosa (Stahel) Singer: a experiência da Amazônia Brasileira. Agrotrópica, 10, 49–60.

    Google Scholar 

  • Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19(10), 535–544.

    Article  Google Scholar 

  • Anonymous. (1968). Plant disease development and control. Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Arévalo, E., García, L., Krauss, U., Ríos, R., Zúñiga, L., & Adriazola, J. (1999). Mejoramiento genético para el control de enfermedades del cacao en el Perú. In Proceedings of the International Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement (pp. 127–133). Salvador, Bahia, Brazil: INGENIC.

    Google Scholar 

  • Argout, X., Salse, J., Aury, J.-M., Guiltinan, M. J., Droc, G., Gouzy, J., et al. (2011). The genome of Theobroma cacao. Nature Genetics, 43(2), 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Arguello-Castellanos, O. (1997). Evaluación de materiales de cacao por resistencia a Moniliophthora roreri en Santander. In Memorias del 3er SeminarioTécnico Regional 7 CORPOICA (pp. 23–29). Bucaramanga, Colombia: CORPOICA.

    Google Scholar 

  • Arneson, P. A. (2001). Plant disease epidemiology. In The plant health instructor. St. Paul, MN: The American Phytopathological Society.

    Google Scholar 

  • Arunga, E. E., Van Rheenen, H. A., & Owuoche, J. O. (2010). Diallel analysis of Snap bean (Phaseolus vulgaris L.) varieties for important traits. African Journal of Agricultural Research, 5(15), 1951–1957.

    Google Scholar 

  • Baker, R. E. D., & Holliday, P. (1957). Witches’ broom disease of cacao (Marasmius perniciosus Stahel). In Phytopathological papers (Vol. 2, p. 42). Surrey, Kew: Commonwealth Mycological Institute.

    Google Scholar 

  • Bartley, B. (1977). The status of genetic resistance in cacao to Crinipellis perniciosa (Stahel) Singer. In Proceedings 6th International Cocoa Research Conference (pp. 57–69). Caracas, Venezuela: Cocoa Producers’ Alliance.

    Google Scholar 

  • Bartley, B. G. D. (2005). The genetic diversity of cacao and its utilization. Wallingford, Oxfordshire, UK: CABI Publishing.

    Book  Google Scholar 

  • Baudouin, L., Baril, C., Clément-Demange, A., Leroy, T., & Paulin, D. (1997). Recurrent selection of tropical tree crops. Euphytica, 96(1), 101–114.

    Article  Google Scholar 

  • Bhattacharjee, R., & Kumar, P. L. (2007). Cacao. In C. Kole (Ed.), Genome mapping and molecular breeding in plants (Vol. 6, pp. 127–142). Berlin: Springer.

    Google Scholar 

  • Blanco, M. (1837). Flora de Filipinas. Manila: Lopez.

    Google Scholar 

  • Bos, I., & Caligari, P. (2008). Applications of quantitative genetic theory in plant breeding. In Selection methods in plant breeding (pp. 225–287). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Bowers, J. H., Bailey, B. A., Hebbar, P. K., Sanogo, S., & Lumsden, R. D. (2001). The impact of plant diseases on world chocolate production. Plant Health Progress. doi:10.1094/PHP-2001-0709-01-RV.

    Google Scholar 

  • Boza, E. J., Motamayor, J. C., Amores, F. M., Cedeño-Amador, S., Tondo, C. L., Livingstone, D. S., et al. (2014). Genetic characterization of the cacao cultivar CCN 51: Its impact and significance on global cacao improvement and production. Journal of the American Society for Horticultural Science, 139(2), 219–229.

    CAS  Google Scholar 

  • Briggs, F. N., & Knowles, P. F. (1977). Introduction to plant breeding. New York: Reinhold Publishing.

    Google Scholar 

  • Brown, J. S., Phillips-Mora, W., Power, E. J., Krol, C., Cervantes-Martinez, C., Motamayor, J. C., et al. (2007). Mapping QTLs for resistance to frosty pod and black pod diseases and horticultural traits in Theobroma cacao L. Crop Science, 47(5), 1851–1858.

    Article  Google Scholar 

  • Brown, J. S., Schnell, R., Motamayor, J., Lopes, U., Kuhn, D. N., & Borrone, J. W. (2005). Resistance gene mapping for witches’ broom disease in Theobroma cacao L. in an F2 population using SSR markers and candidate genes. Journal of the American Society for Horticultural Science, 130(3), 366–373.

    CAS  Google Scholar 

  • CacaoNet. (2012). In c. B. Laliberté (Ed.), A global strategy for the conservation and use of cacao genetic resources, as the foundation for a sustainable cocoa economy. Montpellier, France: Bioversity International.

    Google Scholar 

  • Caldwell, R. M., Schafer, J. F., Compton, L. E., & Patterson, F. L. (1958). Tolerance to cereal leaf rusts. Science, 128(3326), 714–715.

    Article  PubMed  CAS  Google Scholar 

  • Capriles de Reyes, L., & Reyes, H. (1968). Contenido de polifenoles en dos variedades de Theobroma cacao L. y su relacion con la resistencia a Ceratocystis fimbriata. Agronomia Tropical, 18, 339–355.

    CAS  Google Scholar 

  • Cervantes-Martinez, C., Brown, J. S., Schnell, R. J., Phillips-Mora, W., Takrama, J. F., & Motamayor, J. C. (2006). Combining ability for disease resistance, yield, and horticultural traits of cacao (Theobroma cacao L.) clones. Journal of the American Society for Horticultural Science, 131(2), 231–241.

    Google Scholar 

  • Cilas, C., & Despréaux, D. (2004). Improvement of cocoa tree resistance to Phytophthora diseases. Versailles, France: Editions Quae.

    Google Scholar 

  • Cuatrecasas, J. (1964). Cacao and its allies. A taxonomic revision of the genus Theobroma. Contributions from the United States Herbarium, 35(6), 379–605.

    Google Scholar 

  • Dangl, J. L., & Jones, J. D. G. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411(6839), 826–833.

    Article  PubMed  CAS  Google Scholar 

  • de Albuquerque, P. B., Silva, S. V. M., Luz, E. M. N., Pires, J., Vieira, A. C., Demétrio, C. B., et al. (2010). Novel sources of witches’ broom resistance (causal agent Moniliophthora perniciosa) from natural populations of Theobroma cacao from the Brazilian Amazon. Euphytica, 172(1), 125–138.

    Article  Google Scholar 

  • Delgado, J., Ampuero, E., & Doak, K. (1960).Posible evidencia de resistencia a la Monilia roreri Cif. y Par. en algunos clones de la Estación Experimental Tropical de Pichilingue. In Proceedings of the 8th Inter American Cacao Conference. Port-of-Spain, Trinidad & Tobago: Trinidad, Government Press.

    Google Scholar 

  • Dias, L. A. S. (2001). Novos rumos no melhoramento. In L. A. S. Dias (Ed.), Melhoramento genético do cacaueiro (pp. 217–287). Viçosa: Funape-UFG, Editora Folha de Viçosa Ltda.

    Google Scholar 

  • Dias, L. A. S., & Kageyama, P. Y. (1995). Combining-ability for cacao (Theobroma cacao L.) yield components under southern Bahia conditions. Theoretical and Applied Genetics, 90(3–4), 534–541.

    PubMed  CAS  Google Scholar 

  • Dias, L. A. S., & Resende, M. D. V. (2001). Estratégias e métodos de seleção. In L. A. S. Dias (Ed.), Melhoramento genético do cacaueiro (pp. 217–287). Viçosa: Funape-UFG, Editora Folha de Viçosa Ltda.

    Google Scholar 

  • Dickinson, A., & Jinks, J. (1956). A generalised analysis of diallel crosses. Genetics, 41(1), 65.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Edwards, D. (1978). Studies on the manipulation of the timing of crop maturity of cocoa in Ecuador in relation to losses from pod diseases. The Journal of Horticultural Science, 53(3), 243–254.

    Google Scholar 

  • Efombagn, M., Nyassé, S., Sounigo, O., Kolesnikova-Allen, M., & Eskes, A. (2007). Participatory cocoa (Theobroma cacao) selection in Cameroon: Phytophthora pod rot resistant accessions identified in farmers’ fields. Crop Protection, 26(10), 1467–1473.

    Article  Google Scholar 

  • Efron, Y., Epaina, P., & Marfu, J. (2005). Breeding strategies to improve cocoa production in Papua New Guinea. In F. Bekele, M. End, & A. Eskes (Eds.), Proceedings of the International Workshop on Cocoa Breeding for Improved Production Systems (pp. 79–91). Accra, Ghana: INGENIC.

    Google Scholar 

  • End, M., Daymond, A. & Hadley, P. (2014). Technical guidelines for the safe movement of cacao germplasm. Revised from the FAO/IPGRI Technical Guidelines No. 20 (Second Update, August 2014). Montpellier, France: Global Cacao Genetic Resources Network (CacaoNet), Bioversity International. ISBN 978-92-9043-987-5.

    Google Scholar 

  • Enríquez, G., Brenes, O., & Delgado, J. (1982). Desarrollo e impacto de la moniliasis del cacao en Costa Rica. In Proceedings, Cartagena, Colombia, 18–23 Oct., 1981/8 International Cocoa Research Conference= Actes, Cartagena, Colombia, 18–23 oct., 1981/8 Conference internationale sur la recherche cacaoyere: Lagos. Lagos, Nigeria: Cocoa Producers’ Alliance.

    Google Scholar 

  • Enríquez, G., & Soria, J. (1999). Genetic research on cocoa diseases at CATIE (1960-1990). In Proceedings of the International Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement (pp. 33–40). Salvador, Bahia, Brazil: INGENIC.

    Google Scholar 

  • Epaina, P. (2014). Identification of molecular markers and quantitative trait loci linked to resistance to vascular streak dieback and Phytophthora pod rot of cacao (Theobroma cacao L). Sydney, Australia: University of Sydney, Faculty of Agriculture and Environment.

    Google Scholar 

  • Eskes, A. (2011). Collaborative and participatory approaches to cocoa variety improvement. Final report of the CFC/ICCO/Bioversity project on cocoa productivity and quality improvement: a participatory approach (2004–2010). Amsterdam, The Netherlands/London, UK/Rome, Italy: CFC/ICCO/Bioversity International.

    Google Scholar 

  • Eskes, B., & Efron, Y. (2006). Global approaches to cocoa germplasm utilization and conservation. Final report of the CFC/ICCO/IPGRI project on “Cocoa Germplasm Utilization and Conservation: A Global Approach” (1998–2004). Amsterdam, The Netherlands/London, UK/Rome, Italy: CFC/ICCO/IPGRI.

    Google Scholar 

  • Evans, H. C. (2007). Cacao diseases - the trilogy revisited. Phytopathology, 97(12), 1640–1643.

    Article  PubMed  Google Scholar 

  • Evans, H., Edwards, D., & Rodriguez, M. (1977). Research on cocoa diseases in Ecuador: Past and present. PANS, 23(1), 68–80.

    Google Scholar 

  • Evans, H., Krauss, U., Rios Rutz, R., Zecevich Acosta, T., & Arévalo-Gardini, E. (1998). Cocoa in Peru. Cocoa Growers’ Bulletin, 51, 7–22.

    Google Scholar 

  • Evans, H. C., Stalpers, J. A., Samson, R. A., & Benny, G. L. (1978). On the taxonomy of Monilia roreri, an important pathogen of Theobroma cacao in South America. Canadian Journal of Botany, 56(20), 2528–2532.

    Article  Google Scholar 

  • Falconer, D., & Mackay, T. (1996). Introduction to quantitative genetics. Harlow, UK: Longman.

    Google Scholar 

  • Faleiro, F., Queiroz, V., Lopes, U., Guimarães, C., Pires, J., Yamada, M., et al. (2006). Mapping QTLs for Witches’ Broom (Crinipellis perniciosa) resistance in Cacao (Theobroma Cacao L.). Euphytica, 149(1-2), 227–235.

    Article  CAS  Google Scholar 

  • Ferreira, L. (1997). Cacau: clones tecnológicos. Biotecnologia Ciência & Desenvolvimento, 1, 20–24.

    Google Scholar 

  • Feys, B. J., & Parker, J. E. (2000). Interplay of signaling pathways in plant disease resistance. Trends in Genetics, 16(10), 449–455.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, H. H., Haun, J. R., & Ackerman, W. L. (1960). Cacao seedling production and distribution through plant quarantine. Cacao, 5(4), 1–8.

    Google Scholar 

  • Flor, H. (1947). Inheritance of reaction to rust in flax. Journal of Agricultural Research, 74, 241–262.

    Google Scholar 

  • Fonseca, S., de Almeida, L., & Andebrhan, T. (1985). Patogenicidade de isolados e avaliação de resistência de clones de cacau a Crinipellis perniciosa. In Proceedings, International Cocoa Research Conference. Lome, Togo: Cocoa Producers’ Alliance.

    Google Scholar 

  • Fonseca, S., & Wheeler, B. (1990). Assessing resistance to Crinipellis perniciosa using cocoa callus. Plant Pathology, 39(3), 463–471.

    Article  Google Scholar 

  • Fowler, R. L. (1948). Cacao cultivation and improvement programs.

    Book  Google Scholar 

  • Freeman, B. C., & Beattie, G. A. (2008). An overview of plant defenses against pathogens and herbivores. In The plant health instructor. St. Paul, MN: The American Phytopathological Society.

    Google Scholar 

  • Frias, G., Purdy, L., & Schmidt, R. (1995). An inoculation method for evaluating resistance of cacao to Crinipellis perniciosa. Plant Disease, 79(8), 787–791.

    Article  Google Scholar 

  • Frison, E. & Eskes, B. (1999). Improved use of germplasm for sustainable cocoa-based agro-forestry systems in Africa. In STCP Forum. Ibadan, Nigeria: IITA.

    Google Scholar 

  • Fulton, R. H. (1989). The cacao disease trilogy: Black pod, Monilia pod rot, and witches’-broom. Plant Disease, 73(7), 601–603.

    Article  Google Scholar 

  • Gallais, A. (1978). Amelioration des populations, methodes de selection et creation de varieties. 2. Le concept de valeur varietale de genotypes et ses consequences pour la selection recurrente. In Annales de l’Amelioration des Plantes.

    Google Scholar 

  • Gardella, D., Enriquez, G., & Saunders, J. (1982). Inheritance of clonal resistance to Ceratocystis fimbriata in cacao hybrids. In Proceedings of 8th International Cocoa Research Conference, Cartagena, Colombia, 18–23 Oct 1981 (pp. 695–702). Lagos, Nigeria: Cocoa Producers’ Alliance.

    Google Scholar 

  • Gill, N. (2014). Chocolate has new Latin king as Ecuador overtakes Brazil. Bloomberg Business.

    Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, P. H. (1974). Phytophthora disease of cocoa. New York, London: Longman.

    Google Scholar 

  • Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences, 9(4), 463–493.

    Google Scholar 

  • Guest, D. (2007). Black pod: Diverse pathogens with a global impact on cocoa yield. Phytopathology, 97(12), 1650–1653.

    Article  PubMed  Google Scholar 

  • Guest, D., & Keane, P. (2007). Vascular-streak dieback: A new encounter disease of cacao in Papua New Guinea and Southeast Asia caused by the obligate basidiomycete Oncobasidium theobromae. Phytopathology, 97(12), 1654–1657.

    Article  PubMed  Google Scholar 

  • Ha, B.-K., Hussey, R. S., & Boerma, H. R. (2007). Development of SNP assays for marker-assisted selection of two southern root-knot nematode resistance QTL in soybean. Crop Science, 47(S2), S-73–S-82.

    Article  Google Scholar 

  • Hammond-Kosack, K. E., & Jones, J. (1996). Resistance gene-dependent plant defense responses. The Plant Cell, 8(10), 1773.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K. E., & Parker, J. E. (2003). Deciphering plant–pathogen communication: Fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology, 14(2), 177–193.

    Article  PubMed  CAS  Google Scholar 

  • Hardman, C. (2014). Giant on a pinhead – A profile of the cocoa sector. London, UK: Hardman & Co.

    Google Scholar 

  • Hasnah, Fleming, E. M., Villano, R. A., & Patrick, I. (2011). The potential of cacao agribusiness for poverty alleviation in West Sumatra. Canberra, ACT: Australian Agricultural and Resource Economics Society.

    Google Scholar 

  • Hebbar, P. K. (2007). Cacao diseases: A global perspective from an industry point of view. Phytopathology, 97(12), 1658–1663.

    Article  PubMed  Google Scholar 

  • Holub, E. B., Beynon, L. J., & Crute, I. R. (1994). Phenotypic and genotypic characterization of interactions between isolates of Peronospora - parasitica and accessions of Arabidopsis - thaliana. Molecular Plant-Microbe Interactions, 7(2), 223–239.

    Article  CAS  Google Scholar 

  • Hunter, J. R. (1990). The status of cacao (Theobroma cacao, Sterculiaceae) in the Western Hemisphere. Economic Botany, 44(4), 425–439.

    Article  Google Scholar 

  • Hurst, W. J., Tarka, S. M., Powis, T. G., Valdez, F., & Hester, T. R. (2002). Archaeology: Cacao usage by the earliest Maya civilization. Nature, 418(6895), 289–290.

    Article  PubMed  CAS  Google Scholar 

  • Irizarry, H., & Rivera, E. (1998). Early yield of five cacao families at three locations in Puerto Rico. Journal of agriculture of the University of Puerto Rico, 82(3-4), 163–171.

    Google Scholar 

  • Iton, E. (1966). Ceratocystis wilt. In Annual Report on Cacao Research for 1965 (Ed I. C. o. T. A. U. o. W. Indies, pp. 48–49). Trinidad and Tobago: University of West Indies.

    Google Scholar 

  • Iwaro, A., & Butler, D. (2000). Germplasm enhancement for resistance to black pod and witches’ broom diseases. In Proceedings of the 13th International Cocoa Research Conference: Towards the effective and optimum promotion of cocoa through research and development (pp. 3–10). Kota Kinabulu, Sabah, Malaysia: Cocoa Producers’ Alliance.

    Google Scholar 

  • Iwaro, A., Butler, D., & Eskes, A. (2006). Sources of resistance to Phytophthora pod rot at the International CocoaGenebank, Trinidad. Genetic Resources and Crop Evolution, 53(1), 99–109.

    Article  CAS  Google Scholar 

  • Iwaro, A., Sreenivasan, T. & Spence, J. (1996). Studies on black pod resistance in Trinidad. In Proceedings of Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement (pp. 91–101). Salvador-Bahia, Brazil: INGENIC.

    Google Scholar 

  • Ji, K., Zhang, D., Motilal, L., Boccara, M., Lachenaud, P., & Meinhardt, L. (2013). Genetic diversity and parentage in farmer varieties of cacao (Theobroma cacao L.) from Honduras and Nicaragua as revealed by single nucleotide polymorphism (SNP) markers. Genetic Resources and Crop Evolution, 60(2), 441–453.

    Article  Google Scholar 

  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. A., & Takemoto, D. (2004). Plant innate immunity–direct and indirect recognition of general and specific pathogen-associated molecules. Current Opinion in Immunology, 16(1), 48–62.

    Article  PubMed  CAS  Google Scholar 

  • Keane, P. (1997). Diseases in natural plant communities. In J. F. Brown & H. J. Ogle (Eds.), Plant pathogens and plant diseases (pp. 518–532). Armidale, NSW, Australia: Rockvale Publications.

    Google Scholar 

  • Keane, P. (2012). Horizontal or generalized resistance to pathogens in plants. Rijeka, Croatia: INTECH Open Access Publisher.

    Book  Google Scholar 

  • Keen, N. (1990). Gene-for-gene complementarity in plant-pathogen interactions. Annual Review of Genetics, 24(1), 447–463.

    Article  PubMed  CAS  Google Scholar 

  • Klement, Z. (1982). Hypersensitivity. In M. Mount & G. Lacy (Eds.), Phytopathogenic prokaryotes (Vol. 2). New York: Academic Press.

    Google Scholar 

  • Knight, C. (2000). Cocoa review: Supply and demand trends. Washington, DC: American Cocoa Research Institute.

    Google Scholar 

  • Kojima, K.-I., & Kelleher, T. M. (1963). A comparison of purebred and crossbred selection schemes with two populations of Drosophila pseudoobscura. Genetics, 48(1), 57.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Krauss, U., & Soberanis, W. (2001). Rehabilitation of diseased cacao fields in Peru through shade regulation and timing of biocontrol measures. Agroforestry Systems, 53(2), 179–184.

    Article  Google Scholar 

  • Kuhn, D., Heath, M., Wisser, R., Meerow, A., Brown, J., Lopes, U., et al. (2003). Resistance gene homologues in Theobroma cacao as useful genetic markers. Theoretical and Applied Genetics, 107(2), 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, D., Livingstone, D., Main, D., Zheng, P., Saski, C., Feltus, F., et al. (2012). Identification and mapping of conserved ortholog set (COS) II sequences of cacao and their conversion to SNP markers for marker-assisted selection in Theobroma cacao and comparative genomics studies. Tree Genetics & Genomes, 8, 97–111.

    Article  Google Scholar 

  • Lachenaud, P., Eskes, A., N’goran, J., Clément, D., Kébé, I., Tahi, M., et al. (2000). Premier cycle de sélection récurrente en Côte d’Ivoire et choix des géniteurs du second cycle. In Proceedings of the 13th International Cocoa Research Conference (pp. 11–22). Kota Kinabalu, Sabah, Malaysia: Cocoa Producers’ Alliance.

    Google Scholar 

  • Laker, H., Sreenivasan, T., & Kumar, D. R. (1988a). Present status of witches’ broom disease of cocoa in Trinidad. International Journal of Pest Management, 34(3), 318–323.

    Google Scholar 

  • Laker, H. A., Sreenivasan, T. N., & Kumar, D. R. (1988b). The resistance of some cocoa clones to Crinipellis perniciosa in Trinidad. In International Cocoa Research Conference (pp. 637–641). Lagos, Nigeria: Cocoa Producers’ Alliance.

    Google Scholar 

  • Lanaud, C., Fouet, O., Clément, D., Boccara, M., Risterucci, A., Surujdeo-Maharaj, S., et al. (2009). A meta–QTL analysis of disease resistance traits of Theobroma cacao L. Molecular Breeding, 24(4), 361–374.

    Article  Google Scholar 

  • Lanaud, C., Risterucci, A. M., Pieretti, I., Falque, M., Bouet, A., & Lagoda, P. J. L. (1999). Isolation and characterization of microsatellites in Theobroma cacao L. Molecular Ecology, 8(12), 2141–2143.

    Article  PubMed  CAS  Google Scholar 

  • Lass, T. (2004). Balancing cocoa production and consumption. In J. Flood & R. Murphy (Eds.), Cocoa futures: A source book of some important issues confronting the cocoa industry (pp. 8–15). Chinchiná: Commodities Press.

    Google Scholar 

  • Legg, J., & Lockwood, G. (1981). Resistance of cocoa to swollen‐shoot virus in Ghana. I. Field trials. Annals of Applied Biology, 97(1), 75–89.

    Article  Google Scholar 

  • Lenne, J. M., & Wood, D. (1991). Plant diseases and the use of wild germplasm. Annual Review of Phytopathology, 29(1), 35–63.

    Article  Google Scholar 

  • Leppik, E. E. (1970). Gene centers of plants as sources of disease resistance. Annual Review of Phytopathology, 8(1), 323–344.

    Article  Google Scholar 

  • Lima, E. M., Pereira, N. E., Pires, J. L., Barbosa, A. M. M., & Corrêa, R. X. (2013). Genetic molecular diversity, production and resistance to witches’ broom in cacao clones. Crop Breeding and Applied Biotechnology, 13(2), 127–135.

    Article  CAS  Google Scholar 

  • Livingstone, D., III, Freeman, B., Motamayor, J., Schnell, R., Royaert, S., Takrama, J., et al. (2012). Optimization of a SNP assay for genotyping Theobroma cacao under field conditions. Molecular Breeding, 30(1), 33–52.

    Article  CAS  Google Scholar 

  • Livingstone, D. S. I., Motamayor, J. C., Schnell, R. J., Cariaga, K., Freeman, B., Meerow, A. W., et al. (2011). Development of single nucleotide polymorphism markers in Theobroma cacao and comparison to simple sequence repeat markers for genotyping of Cameroon clones. Molecular Breeding, 27(1), 93–106.

    Article  Google Scholar 

  • Livingstone, D., Royaert, S., Stack, C., Mockaitis, K., May, G., Farmer, A., et al. (2015). Making a chocolate chip: Development and evaluation of a 6K SNP array for Theobroma cacao. DNA Research. doi:10.1093/dnares/dsv009.

    PubMed Central  PubMed  Google Scholar 

  • Lo Iacono, G., van den Bosch, F., & Gilligan, C. A. (2013). Durable resistance to crop pathogens: An epidemiological framework to predict risk under uncertainty. PLoS Computational Biology, 9(1), e1002870.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lopes, U. V., Monteiro, W. R., Pires, J. L., Clement, D., Yamada, M. M., & Gramacho, K. P. (2011). Cacao breeding in Bahia, Brazil: Strategies and results. Crop Breeding and Applied Biotechnology, 11(SPE), 73–81.

    Article  Google Scholar 

  • Machikowa, T., Saetang, C., & Funpeng, K. (2011). General and specific combining ability for quantitative characters in sunflower. Journal of Agricultural Science, 3(1), 91–95.

    Article  Google Scholar 

  • Maharaj, K., Maharaj, P., Bekele, F. L., Ramnath, D., Bidaisee, G., Bekele, I., et al. (2011). Trinidad selected hybrids: An investigation of the phenotypic and agro-economic traits of 20 selected cacao cultivars. Tropical Agriculture, 88(4), 175–185.

    Google Scholar 

  • Maloy, O. C. (2005). Plant disease management. In The plant health instructor (Vol. 10). St. Paul, MN: The American Phytopathological Society.

    Google Scholar 

  • Marelli, J.-P., Fernandes, L. d. S., Corrêa, F. M., Royaert, S. E., Schnell, R. J., Corrêa, R. X., et al. (2014). QTL mapping of Ceratocystis wilt resistance in Theobroma cacao. In Plant and Animal Genome XXII Conference: Plant and Animal Genome.

    Google Scholar 

  • Marelli, J.-P., Maximova, S. N., Gramacho, K. P., Kang, S., & Guiltinan, M. J. (2009). Infection biology of Moniliophthora perniciosa on Theobroma cacao and alternate solanaceous hosts. Tropical Plant Biology, 2(3-4), 149–160.

    Article  Google Scholar 

  • Martin, G. B., Bogdanove, A. J., & Sessa, G. (2003). Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology, 54(1), 23–61.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, B. A., & Linde, C. (2002). The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica, 124(2), 163–180.

    Article  CAS  Google Scholar 

  • McMahon, P., Purwantara, A., Susilo, A. W., Sukamto, S., Wahab, A., Purung, H. b., et al. (2010). On-farm selection for quality and resistance to pest/diseases of cocoa in Sulawesi: (ii) Quality and performance of selections against Phytophthora pod rot and vascular-streak dieback. International Journal of Pest Management, 56(4), 351–361.

    Article  Google Scholar 

  • Meinhardt, L. W., Rincones, J., Bailey, B. A., Aime, M. C., Griffith, G. W., Zhang, D., et al. (2008). Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: What’s new from this old foe? Molecular Plant Pathology, 9(5), 577–588.

    Article  PubMed  Google Scholar 

  • Minifie, B. W. (1989). Chocolate, cocoa, and confectionery: Science and technology. New York: Van Nostrand Reinhold.

    Book  Google Scholar 

  • Monteiro, W. R., Lopes, U. V., & Clement, D. (2009). Genetic improvement in cocoa. In Breeding plantation tree crops: Tropical species (pp. 589–626). Berlin: Springer.

    Chapter  Google Scholar 

  • Monteiro, W. R., Lopes, U. V., & Pinto, L. (1995). Variedade Theobahia; histórico e características gerais. In Informação e Difusão (Vol. 1, pp. 1–2). CEPEC: Ilhéus, Bahia, Brazil.

    Google Scholar 

  • Motamayor, J., Lachenaud, P., da Silva e Mota, J., Loor, R., Kuhn, D., Brown, J., et al. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PloS One, 3, e3311.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Motamayor, J., & Lanaud, C. (2002). Molecular analysis of the origin and domestication of Theobroma cacao L. In V. R. Rao, A. Brown, & M. Jackson (Eds.), Managing plant genetic diversity (pp. 77–87). Wallingford, Oxfordshire, UK: CABI Publishing.

    Google Scholar 

  • Motamayor, J. C., Mockaitis, K., Schmutz, J., Haiminen, N., Donald Iii, L., Cornejo, O., et al. (2013). The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biology, 14(6), r53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Motilal, L., & Butler, D. (2003). Verification of identities in global cacao germplasm collections. Genetic Resources and Crop Evolution, 50(8), 799–807.

    Article  Google Scholar 

  • Motilal, L. A., Zhang, D. P., Mischke, S., Meinhardt, L. W., & Umaharan, P. (2013). Microsatellite-aided detection of genetic redundancy improves management of the International Cocoa Genebank, Trinidad. Tree Genetics & Genomes, 9(6), 1395–1411.

    Article  Google Scholar 

  • Mysore, K. S., & Ryu, C.-M. (2004). Nonhost resistance: How much do we know? Trends in Plant Science, 9(2), 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Ndoumbé, M., Bieysse, D., & Cilas, C. (2001). Multi‐trait selection in a diallel crossing scheme of cocoa. Plant Breeding, 120(4), 365–367.

    Article  Google Scholar 

  • Nürnberger, T., Brunner, F., Kemmerling, B., & Piater, L. (2004). Innate immunity in plants and animals: Striking similarities and obvious differences. Immunological Reviews, 198(1), 249–266.

    Article  PubMed  Google Scholar 

  • Ofori, A., Padi, F. K., Ameyaw, G. A., Dadzie, A. M., & Lowor, S. (2015). Genetic variation among cocoa (Theobroma cacao L.) families for resistance to cocoa swollen shoot virus disease in relation to total phenolic content. Plant Breeding, 134(4), 477–484.

    Article  Google Scholar 

  • Okey, E., & Sreenivasan, T. (1996). Salicylic acid: A factor in systemic resistance of cacao to Phytophthora palmivora. In Proceedings of the Brighton Crop Protection Conference (Vol. 3, pp. 955–960). Hampshire, UK: British Crop Protection Council.

    Google Scholar 

  • Oliver, R. P., & Ipcho, S. V. (2004). Arabidopsis pathology breathes new life into the necrotrophs‐vs.‐biotrophs classification of fungal pathogens. Molecular Plant Pathology, 5(4), 347–352.

    Article  PubMed  CAS  Google Scholar 

  • Ordas, B., Butron, A., Alvarez, A., Revilla, P., & Malvar, R. (2012). Comparison of two methods of reciprocal recurrent selection in maize (Zea mays L.). Theoretical and Applied Genetics, 124(7), 1183–1191.

    Article  PubMed  CAS  Google Scholar 

  • Osbourn, A. E. (1996). Preformed antimicrobial compounds and plant defense against fungal attack. The Plant Cell, 8(10), 1821.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Padi, F. K., Domfeh, O., Takrama, J., & Opoku, S. (2013). An evaluation of gains in breeding for resistance to the cocoa swollen shoot virus disease in Ghana. Crop Protection, 51, 24–31.

    Article  Google Scholar 

  • Page, B., Casas, E., Heaton, M., Cullen, N., Hyndman, D., Morris, C., et al. (2002). Evaluation of single-nucleotide polymorphisms in for association with meat tenderness in cattle. Journal of Animal Science, 80(12), 3077–3085.

    PubMed  CAS  Google Scholar 

  • Paim, V. R. L. d. M., Luz, E. D. M. N., Pires, J. L., Silva, S. D. V. M., Souza, J. T. d., Albuquerque, P. S. B., et al. (2006). Sources of resistance to Crinipellis perniciosa in progenies of cacao accessions collected in the Brazilian Amazon. Scientia Agricola, 63(6), 572–578.

    Google Scholar 

  • Parker, J. E., Feys, B. J., Van Der Biezen, E. A., Noël, L., Aarts, N., Austin, M. J., et al. (2000). Unravelling R gene‐mediated disease resistance pathways in Arabidopsis. Molecular Plant Pathology, 1(1), 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Parlevliet, J. E. (1979). Components of resistance that reduce the rate of epidemic development. Annual Review of Phytopathology, 17(1), 203–222.

    Article  Google Scholar 

  • Paulin, D., Ducamp, M., & Lachenaud, P. (2008). New sources of resistance to Phytophthora megakarya identified in wild cocoa tree populations of French Guiana. Crop Protection, 27(7), 1143–1147.

    Article  Google Scholar 

  • Phillips-Mora, W. (1999). Studies at CATIE on moniliasis resistance (Moniliophthora roreri (Cif. & Par.) Evans et al.). In Proceedings of the International Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement (pp. 111–117). Salvador, Bahia, Brazil: INGENIC.

    Google Scholar 

  • Phillips-Mora, W. (2010). The cacao breeding program at CATIE, Costa Rica. In The 18th Plant and Animal Genome Conference (p. 115).

    Google Scholar 

  • Phillips-Mora, W., Arciniegas-Leal, A., Mata-Quirós, A., & Motamayor-Arias, J. C. (2012). In CATIE (Ed.), Catálogo de clones de cacao seleccionados por el CATIE para siembras comerciales (p. 68). Turrialba, Costa Rica: CATIE.

    Google Scholar 

  • Phillips-Mora, W., & Castillo, J. (1999). Artificial inoculations in cacao with the fungi Moniliophthora roreri (Cif. Par) Evans et al. and Phytophthora palmivora (Butl.) Butler. In CATIE (Ed.), Actas IV Semana CientíficaTurrialba. Logros de la investigacion para un nuevo milenio. Programa de Investigación. Turrialba, Costa Rica: CATIE.

    Google Scholar 

  • Phillips‐Mora, W., Castillo, J., Krauss, U., Rodríguez, E., & Wilkinson, M. (2005). Evaluation of cacao (Theobroma cacao) clones against seven Colombian isolates of Moniliophthora roreri from four pathogen genetic groups. Plant Pathology, 54(4), 483–490.

    Article  CAS  Google Scholar 

  • Phillips-Mora, W., & Cerda Bustillos, R. (2009). Enfermedades del cacao en centroamérica: Catálogo. In CATIE (Ed.), Serie Técnica: Manual Técnico. CATIE: Turrialba, Costa Rica.

    Google Scholar 

  • Phillips-Mora, W., & Galindo, J. J. (1988). Evaluation of the cacao resistance to Moniliophthora roreri Cif. & Par. In Proceedings of the 10th International Cocoa Research Conference (pp. 685–689). Santo Domingo, Dominican Republic: Cocoa Producers’ Alliance.

    Google Scholar 

  • Phillips-Mora, W., & Galindo, J. (1989). Métodos de Inoculación y Evaluación de la Resistencia a Phytophthora palmivora en Frutos de Cacao (Theobroma cacao). Turrialba, 39(4), 488–496.

    Google Scholar 

  • Phillips-Mora, W., & Wilkinson, M. J. (2007). Frosty pod of cacao: A disease with a limited geographic range but unlimited potential for damage. Phytopathology, 97(12), 1644–1647.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, L. R. M., & Pires, J. L. (1998). Selecao de plantas de cacau resistentes a vassoura de bruxa. In Boletín Técnico. Ilhéus, Brazil: CEPLAC-CEPEC.

    Google Scholar 

  • Pires, J. L., Marita, J. M., Lopes, U. V., Yamada, M. M., Atiken, W., Melo, G., et al. (2000). Diversity for phenotypic traits and molecular markers in CEPEC’s germplasm collection in Bahia, Brazil. In Proceedings of the International Workshop on New Technologies and Cocoa Breeding (pp. 75–92). Kota Kinabalu, Sabah, Malaysia: INGENIC.

    Google Scholar 

  • Pires, J., Monteiro, W., Luz, E., Silva, S., Pinto, L., Figueira, A., et al. (1999). Cocoa breeding for witches’ broom resistance at CEPEC, Bahia, Brazil. In Proceedings of the International Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement (pp. 91–101). Salvador, Bahia, Brazil: INGENIC.

    Google Scholar 

  • Ploetz, R. (2007a). Diseases of tropical perennial crops: Challenging problems in diverse environments. Plant Disease, 91(6), 644–663.

    Article  Google Scholar 

  • Ploetz, R. C. (2007b). Cacao diseases: Important threats to chocolate production worldwide. Phytopathology, 97(12), 1634–1639.

    Article  PubMed  Google Scholar 

  • Pokou, N., N’goran, J., Kébé, I., Eskes, A., Tahi, M., & Sangaré, A. (2008). Levels of resistance to Phytophthora pod rot in cocoa accessions selected on-farm in Côte d’Ivoire. Crop Protection, 27(3), 302–309.

    Article  Google Scholar 

  • Pokou, N., N’Goran, J., Lachenaud, P., Eskes, A., Montamayor, J., Schnell, R., et al. (2009). Recurrent selection of cocoa populations in Cote d’Ivoire: Comparative genetic diversity between the first and second cycles. Plant Breeding, 128(5), 514–520.

    Article  Google Scholar 

  • Posnette, A. (1940). Transmission of ‘swollen shoot’ disease of Cacao. Tropical Agriculture, Trinidad and Tobago, 17(5).

    Google Scholar 

  • Posnette, A. (1981). The role of wild hosts in cocoa swollen shoot disease. In Pests, pathogens and vegetation (pp. 71–78). London: Pitman.

    Google Scholar 

  • Posnette, A., & Todd, J. M. (1955). Virus diseases of cacao in West Africa IX. Strain variation and interference in virus 1A. Annals of Applied Biology, 43(3), 433–453.

    Article  Google Scholar 

  • Pound, F. (1934). The progress of selection. In Third Annual Report on Cacao Research 1933 (pp. 25–28). Trinidad and Tobago: Government Printery.

    Google Scholar 

  • Pound, F. (1935). The progress of selection. In Fourth Annual Report on Cacao Research 1934 (pp. 7–11). Trinidad and Tobago: Government Printery.

    Google Scholar 

  • Pound, F. (1936). The completion of selection. In Fifth Annual Report on Cacao Research 1935 (pp. 7–15). Trinidad and Tobago: Government Printery.

    Google Scholar 

  • Pound, F. J. (1938). Cacao and witchbroom disease (Marasmius perniciosus) of South America (With notes on other species of Theobroma. Report by Dr. F. J. Pound on a visit to Ecuador, the Amazon Valley, and Colombia. April 1937–April 1938, 58 pp). Port-of-Spain, Trinidad.

    Google Scholar 

  • Pound, F. J. (1943). Cacao and witches’ broom disease (Marasmius perniciosus) (Report on a recent visit to the Amazon territory of Peru, September, 1942-February, 1943, 14 pp). Trinidad and Tobago.

    Google Scholar 

  • Pugh, T., Fouet, O., Risterucci, A., Brottier, P., Abouladze, M., Deletrez, C., et al. (2004). A new cacao linkage map based on codominant markers: Development and integration of 201 new microsatellite markers. Theoretical and Applied Genetics, 108(6), 1151–1161.

    Article  PubMed  CAS  Google Scholar 

  • Purdy, L., & Schmidt, R. (1996). Status of cacao witches’ broom: Biology, epidemiology, and management. Annual Review of Phytopathology, 34(1), 573–594.

    Article  PubMed  CAS  Google Scholar 

  • Purseglove, J. W. (1968). Tropical crops. Dicotyledons 1 and 2. London: Longmans.

    Google Scholar 

  • Queiroz, V., Guimarães, C., Anhert, D., Schuster, I., Daher, R., Pereira, M., et al. (2003). Identification of a major QTL in cocoa (Theobroma cacao L.) associated with resistance to witches’ broom disease. Plant Breeding, 122(3), 268–272.

    Article  CAS  Google Scholar 

  • Rafalski, J. A. (2002). Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant Science, 162(3), 329–333.

    Article  CAS  Google Scholar 

  • Resende, M., & Bezerra, J. (1996). Crinipellis perniciosa de um novo hospedeiro (Solanum stipulaceum) induzindo reação de hipersensibilidade em Theobroma cacao. Fitopatologia Brasileira, 21(suplemento), 405.

    Google Scholar 

  • Resende, M., Flood, J., Ramsden, J., Rowan, M. G., Beale, M., & Cooper, R. M. (1996). Novel phytoalexins including elemental sulphur in the resistance of cocoa (Theobroma cocoa L.) to Verticillium wilt (Verticillium dahliae Kleb.). Physiological and Molecular Plant Pathology, 48(5), 347–359.

    Article  CAS  Google Scholar 

  • Rios-Ruiz, R. (1989). Manejo de enfermedades em cacao y café en Tingo Maria (p. 89). Tingo Maria: OSP/PNUD.

    Google Scholar 

  • Rios-Ruiz, R. (2001). Melhoramento para resistência a doenças. In L. A. S. Dias (Ed.), Melhoramento genético do cacaueiro (pp. 289–324). Viçosa: Funape-UFG, Editora Folha de Viçosa Ltda.

    Google Scholar 

  • Risterucci, A., Paulin, D., N’Goran, J., Ducamp, M., & Lanaud, C. (2000). Mapping of quantitative trait loci (QTLs) for resistance to Phytophthora in Theobroma cacao L. INGENIC Newsletter, 5, 9–10.

    Google Scholar 

  • Rivaie, A. A. (2013). Diallel analysis of cocoa (Theobroma cacao L.) resistance to Phytophthora palmivora in Indonesia. Journal of Biology, Agriculture and Healthcare, 3(3), 76–83.

    Google Scholar 

  • Robinson, R. (1969). Disease resistance terminology. Review of Applied Mycology, 48, 11–12.

    Google Scholar 

  • Rojas, E. I., Rehner, S. A., Samuels, G. J., Van Bael, S. A., Herre, E. A., Cannon, P., et al. (2010). Colletotrichum gloeosporioides sl associated with Theobroma cacao and other plants in Panama: Multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia, 102(6), 1318–1338.

    Article  PubMed  Google Scholar 

  • Rorer, J. (1926). Ecuador cacao. Tropical Agriculture, Trinidad and Tobago, 3, 46–47.

    Google Scholar 

  • Russell, G. E. (1978). Plant breeding for pest and disease resistance. London, UK: Butterworth-Heinemann.

    Google Scholar 

  • Samuels, G. J., Ismaiel, A., Rosmana, A., Junaid, M., Guest, D., Mcmahon, P., et al. (2012). Vascular streak dieback of cacao in Southeast Asia and Melanesia: In planta detection of the pathogen and a new taxonomy. Fungal Biology, 116(1), 11–23.

    Article  PubMed  Google Scholar 

  • Sánchez, J., Brenes, O., Phillips, W., & Enriquez, G. (1987). Methodology for inoculating pods with the fungus Moniliophthora (Monilia) roreri. In Proceedings of the 10th Cocoa Research Conference (pp. 467–471). Santo Domingo, Dominican Republic: Cocoa Producers’ Alliance.

    Google Scholar 

  • Santos, R. M., Lopes, U. V., Silva, S. D., Micheli, F., Clement, D., & Gramacho, K. P. (2012). Identification of quantitative trait loci linked to Ceratocystis wilt resistance in cacao. Molecular Breeding, 30(4), 1563–1571.

    Article  CAS  Google Scholar 

  • Santos, R. C. d., Pires, J. L., Lopes, U. V., Gramacho, K. P. G., Flores, A. B., Bahia, R. d. C. S., et al. (2005). Assessment of genetic diversity on a sample of cocoa accessions resistant to witches’ broom disease based on RAPD and pedigree data. Bragantia, 64(3), 361–368.

    Google Scholar 

  • Schafer, J. F. (1971). Tolerance to plant disease. Annual Review of Phytopathology, 9(1), 235–252.

    Article  Google Scholar 

  • Schnell, R., Olano, C., Brown, J., Meerow, A., Cervantes-Martinez, C., Nagai, C., et al. (2005). Retrospective determination of the parental population of superior cacao (Theobroma cacao L.) seedlings and association of microsatellite alleles with productivity. Journal of the American Society for Horticultural Science, 130(2), 181–190.

    CAS  Google Scholar 

  • Sena-Gomes, A., & Machado, R. (1994). Morphological traits in cocoa (Theobroma cacao L.) genotypes. I-Epidermal characteristics of leaves and pods. In M. C. Board (Ed.), International Workshop on Cocoa Breeding Strategies (pp. 181–189). Kuala Lumpur, Malaysia: INGENIC.

    Google Scholar 

  • Sena-Gomes, A., Passinho, H., & Machado, R. (1995). Depósito de cera epicuticular em diferentes genótipos de cacau. Informe Tecnico, 91, 58–59.

    Google Scholar 

  • Sena-Gomes, A., & Rocha, S. (1995). Caracterização estomática em folhas de diferentes genótipos de cacau. Informe Tecnico, 1991, 59–60.

    Google Scholar 

  • Shull, G. H., & Gowen, J. (1952). Beginnings of the heterosis concept. Heterosis, 14–48.

    Google Scholar 

  • Silva, D., Araújo, I., Branco, S., Aguilar‐Vildoso, C., Lopes, U., Marelli, J., et al. (2014). Analysis of resistance to witches’ broom disease (Moniliophthora perniciosa) in flower cushions of Theobroma cacao in a segregating population. Plant Pathology, 63(6), 1264–1271.

    Article  Google Scholar 

  • Silva, S. D. V. M., Pinto, L. R. M., de Oliveira, B. F., Damaceno, V. O., Pires, J. L., & dos Santos Dias, C. T. (2012). Resistência de progênies de cacaueiro à murcha-de-Ceratocystis. Tropical Plant Pathology, 37(3), 191–195.

    Article  Google Scholar 

  • Silva, C. R. S., Venturieri, G. A., & Figueira, A. (2004). Description of Amazonian Theobroma L. collections, species identification, and characterization of interspecific hybrids. Acta Botanica Brasilica, 18(2), 333–341.

    Article  Google Scholar 

  • Simmonds, N., & Smart, J. (1999). Principles of crop improvement (2nd ed.). Oxford, UK: NW Blackwell Science.

    Google Scholar 

  • Simons, M. D. (1969). Heritability of crown rust tolerance in oats. Phytopathology, 59(9), 1329–1333.

    Google Scholar 

  • Six, D. L., & Wingfield, M. J. (2011). The role of phytopathogenicity in bark beetle-fungus symbioses: A challenge to the classic paradigm. Annual Review of Entomology, 56, 255–272.

    Article  PubMed  CAS  Google Scholar 

  • Soderholm, P. K., & Vasquez, F. (1985). Cacao germplasm collection and distribution in USA. Plant Genetic Resources Newsletter, 63, 8–14.

    Google Scholar 

  • Soria, J., & Salazar, G. (1965). Pruebas preliminares de resistencia a Ceratocystis fimbriata en clones e híbridos de cacao. Turrialba, 15(4), 290–295.

    Google Scholar 

  • Spence, J. A. (1961). Probable mechanism of resistance of varieties of cocoa to black pod disease caused by Phytophthora palmivora (Butl.) Butl. Nature, 192, 278.

    Article  Google Scholar 

  • Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89–100.

    Article  PubMed  CAS  Google Scholar 

  • Sprague, G., & Tatum, L. A. (1942). General vs. specific combining ability in single crosses of corn. Journal of the American Society of Agronomy, 34(10), 923–932.

    Article  Google Scholar 

  • Sreenivasan, T. (1995). Grafting on very young cacao seedlings. In Annual Report 1994 (pp. 43–47). St. Augustine, Trinidad & Tobago: The University of the West Indies, Cocoa Research Unit.

    Google Scholar 

  • St. Leger, R., & Screen, S. (2001). Prospects for strain improvement of fungal pathogens of insects and weeds. In Fungi as biocontrol agents: Progress, problems and potential (pp. 219–237). Wallingford, Oxfordshire, UK: CABI Publishing.

    Chapter  Google Scholar 

  • Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G., & Jones, J. D. G. (1995). Molecular genetics of plant disease resistance. Science, 268(5211), 661.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, W. (1936). Swollen shoot and die-back—a new disease of cocoa. Gold Coast Farmer, 5, 144.

    Google Scholar 

  • Stukenbrock, E. H., & McDonald, B. A. (2008). The origins of plant pathogens in agro-ecosystems. Annual Review of Phytopathology, 46, 75–100.

    Article  PubMed  CAS  Google Scholar 

  • Suárez-Capello, C. (1999). Monilia pod rot resistance in Ecuador. In International Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement (pp. 119–121). Bahía, Brazil: INGENIC.

    Google Scholar 

  • Surujdeo‐Maharaj, S., Umaharan, P., Butler, D., & Sreenivasan, T. (2003). An optimized screening method for identifying levels of resistance to Crinipellis perniciosa in cocoa (Theobroma cacao). Plant Pathology, 52(4), 464–475.

    Article  Google Scholar 

  • Surujdeo-Maharaj, S., Umaharan, P., & Butler, D. (2004). Assessment of resistance to witches’-broom disease in clonal and segregating populations of Theobroma cacao. Plant Disease, 88(8), 797–803.

    Article  Google Scholar 

  • Takrama, J., Dadzie, A. M., Opoku, S. Y., Padi, F. K., Adomako, B., Adu-Ampomah, Y., Livingstone, D. S., Motamayor, J. C., Schnell, R. J., Kuhn, D. N. (2012). Applying SNP marker technology in the cacao breeding programme in Ghana. African Crop Science Journal, 20(1).

    Google Scholar 

  • Takrama, J., Kun, J., Meinhardt, L., Mischke, S., Opoku, S. Y., Padi, F. K., Zhang, D. (2014). Verification of genetic identity of introduced cacao germplasm in Ghana using single nucleotide polymorphism (SNP) markers. African Journal of Biotechnology, 13(21), 2127–2136.

    Article  CAS  Google Scholar 

  • Tan, G.-Y., & Tan, W.-K. (1988). Genetic variation in resistance to vascular-streak dieback in cocoa (Theobroma cacao). Theoretical and Applied Genetics, 75(5), 761–766.

    Article  Google Scholar 

  • Tan, G.-Y., & Tan, W.-K. (1990). Additive inheritance of resistance to pod rot caused by Phytophthora palmivora in cocoa. Theoretical and Applied Genetics, 80(2), 258–264.

    Article  PubMed  CAS  Google Scholar 

  • Thevenin, J.-M., Rossi, V., Ducamp, M., Doare, F., Condina, V., & Lachenaud, P. (2012). Numerous clones resistant to Phytophthora palmivora in the “Guiana” genetic group of Theobroma cacao L. PloS One, 7(7).

    Google Scholar 

  • Thevenin, J.-M., Umaharan, R., Surujdeo-Maharaj, S., Latchman, B., Cilas, C., & Butler, D. (2005). Relationships between black pod and witches’-broom diseases in Theobroma cacao. Phytopathology, 95(11), 1301–1307.

    Article  PubMed  Google Scholar 

  • Thordal-Christensen, H. (2003). Fresh insights into processes of nonhost resistance. Current Opinion in Plant Biology, 6(4), 351–357.

    Article  PubMed  CAS  Google Scholar 

  • Turnbull, C. J., Daymond, A. J., Lake, H., Main, B. E., Radha, K., Cryer, N. C., et al. (2010). The role of the international cocoa germplasm database and the international cocoa quarantine centre in information management and distribution of cocoa genetic resources. In 16th International Cocoa Research Conference. Denpasar, Bali, Indonesia: Cocoa Producers’ Alliance.

    Google Scholar 

  • Van der Plank, J. (1963). Plant diseases: Epidemics and control. London: Academic Press.

    Google Scholar 

  • Van der Plank, J. (1966). Horizontal (polygenic) and vertical (oligogenic) resistance against blight. American Potato Journal, 43(2), 43–52.

    Article  Google Scholar 

  • Van der Vossen, H. (1997). Strategies of variety improvement in cocoa with emphasis on durable disease resistance (p. 32). INGENIC (International Group for Genetic Improvement of Cocoa).

    Google Scholar 

  • van Ooijen, G., van den Burg, H. A., Cornelissen, B. J. C., & Takken, F. L. W. (2007). Structure and function of resistance proteins in solanaceous plants. Annual Review of Phytopathology, 45(1), 43–72.

    Article  PubMed  CAS  Google Scholar 

  • Varghese, G., Abidin, Z. & Lam, C. (1987, October). Vascular streak dieback of cocoa in Asia and the prospects of chemical control. In 11th International Congress of Plant Protection, Manila (Philippines).

    Google Scholar 

  • Walton, J. D. (2001). Secondary metabolites: Killing pathogens. New York: Wiley.

    Google Scholar 

  • Ward, H. M. (1889). Croonian Lecture: On some relations between host and parasite in certain epidemic diseases of plants. Proceedings of the Royal Society of London, 47(286-291), 393–443.

    Article  Google Scholar 

  • WCF. (2015). About cocoa (Vol. 2015). World Cocoa Foundation.

    Google Scholar 

  • Wheeler, B., & Mepsted, R. (1988). Pathogenic variability amongst isolates of Crinipellis perniciosa from cocoa (Theobroma cacao). Plant Pathology, 37(4), 475–488.

    Article  Google Scholar 

  • Whitlock, B. A., & Baum, D. A. (1999). Phylogenetic relationships of Theobroma and Herrania (Sterculiaceae) based on sequences of the nuclear gene Vicilin. Systematic Botany, 24, 128–138.

    Article  Google Scholar 

  • Wood, G. A. R., & Lass, R. (1985). Cocoa. London: Blackwell Science.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman A. Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gutiérrez, O.A., Campbell, A.S., Phillips-Mora, W. (2016). Breeding for Disease Resistance in Cacao. In: Bailey, B., Meinhardt, L. (eds) Cacao Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-24789-2_18

Download citation

Publish with us

Policies and ethics