Cacao Diseases pp 567-609 | Cite as

Breeding for Disease Resistance in Cacao

  • Osman A. GutiérrezEmail author
  • Alina S. Campbell
  • Wilbert Phillips-Mora


Cacao production must increase in order to meet the projected rise in the demand for chocolate. Approximately one-third of global production is lost annually to diseases and insects. Four diseases account for the greatest losses worldwide: black pod, caused by four Phytophthora spp.; witches’ broom, caused by Moniliophthora perniciosa; cacao swollen shoot virus, caused by a member of the genus Badnavirus; and frosty pod, caused by Moniliophthora roreri. At the present time, only 30 % of material currently under cultivation is of improved varieties, therefore, there is an urgent need for the development of new, high-yielding, disease-resistant varieties. Sustainable production increases could be achieved if improved varieties were used by the farmers. Cacao breeding was started in Trinidad in the 1930s by F. J. Pound and within a few decades cacao research centers had been established in all the major cacao producing areas worldwide including West Africa and Southeast Asia. Pound and other researchers have made several expeditions to the Amazon to collect wild cacao germplasm. In addition to using the germplasm collected from the wild and farmers’ fields to find new sources of resistance genes, researchers have developed breeding programs that cross and select cacao genotypes in order to accumulate desirable genes for resistance, as well as good horticultural and quality traits. Recently, numerous molecular tools, including the genome sequences of two varieties of cacao, have been developed and/or made available to accelerate the breeding process. International private/public collaborations are in progress to identify candidate resistance genes, map these in the sequenced genomes, and develop molecular markers associated with these genes. Researchers will use these markers in genomics-assisted breeding programs to screen young cacao plants and select those with desirable traits.


General Combine Ability Specific Combine Ability Reciprocal Recurrent Selection Cacao Production Cacao Genotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adejumo, T. (2005). Crop protection strategies for major diseases of cocoa, coffee and cashew in Nigeria. African Journal of Biotechnology, 4(2), 143–150.Google Scholar
  2. Adomako, B. (2007). Causes and extent of yield losses in cocoa progenies. Tropical Science, 47(1), 22–25.CrossRefGoogle Scholar
  3. Adomako, B., Adu-Ampomah, Y., & Ollennu, L. (2006). Evaluation of resistance to cocoa swollen shoot virus (CSSV): Methods, problems and selections. In B. Eskes & Y. Efron (Eds.), Global approaches to cocoa germplasm utilization and conservation. Final report of the CFC/ICCO/IPGRI project on “Cocoa Germplasm Utilization and Conservation: A Global Approach” (1998-2004) (pp. 208–216). Amsterdam, The Netherlands/London, UK/Rome, Italy: CFC/ICCO/IPGRI.Google Scholar
  4. Adu‐Ampomah, Y., Owusu, G., Sackey, S., Padi, B., & Abdul‐Karimu, A. (1996). Use of gamma rays to induce mutants resistant to cocoa swollen shoot disease in Theobroma cacao L. Plant Breeding, 115(1), 74–76.CrossRefGoogle Scholar
  5. Agrios, G. N. (2005). Plant pathology. Boston, MA: Elsevier Academic Press.Google Scholar
  6. Aguilar, M., Resende, M., & Dias, L. (2000). Bases bioquímicas e fisiológicas da resistência a doenças. In L. Dias (Ed.), Melhoramento genético do cacaueiro (pp. 325–329). Viçosa: Funape-UFG, Editora Folha de Viçosa Ltda.Google Scholar
  7. Allegre, M., Argout, X., Boccara, M., Fouet, O., Roguet, Y., Bérard, A., et al. (2012). Discovery and mapping of a new expressed sequence tag-single nucleotide polymorphism and simple sequence repeat panel for large-scale genetic studies and breeding of Theobroma cacao L. DNA Research, 19(1), 23–35.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Allen, J., & Lass, R. (1983). London cocoa trade amazon project: Final report, phase 1. Cocoa Growers’ Bulletin, 34, 1–72.Google Scholar
  9. Almeida, C., Barriga, J., Machado, P., & Bartley, B. (1987). Evolução do programa de conservação dos recursos genéticos de cacau na Amazônia Brasileira. Boletim Técnico, 5, 108.Google Scholar
  10. Altshuler, D., Pollara, V. J., Cowles, C. R., Van Etten, W. J., Baldwin, J., Linton, L., et al. (2000). An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature, 407(6803), 513–516.PubMedCrossRefGoogle Scholar
  11. Ambrosio, A. B., do Nascimento, L. C., Oliveira, B. V., Teixeira, P. J. P., Tiburcio, R. A., Thomazella, D. P. T., et al. (2013). Global analyses of Ceratocystis cacaofunesta mitochondria: From genome to proteome. BMC Genomics, 14(1), 91.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Andebrhan, T., Almeida, L. d., & Nakayama, L. (1998). Resistência de Theobroma cacao L. a Crinipellis perniciosa (Stahel) Singer: a experiência da Amazônia Brasileira. Agrotrópica, 10, 49–60.Google Scholar
  13. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19(10), 535–544.CrossRefGoogle Scholar
  14. Anonymous. (1968). Plant disease development and control. Washington, DC: National Academy of Sciences.Google Scholar
  15. Arévalo, E., García, L., Krauss, U., Ríos, R., Zúñiga, L., & Adriazola, J. (1999). Mejoramiento genético para el control de enfermedades del cacao en el Perú. In Proceedings of the International Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement (pp. 127–133). Salvador, Bahia, Brazil: INGENIC.Google Scholar
  16. Argout, X., Salse, J., Aury, J.-M., Guiltinan, M. J., Droc, G., Gouzy, J., et al. (2011). The genome of Theobroma cacao. Nature Genetics, 43(2), 101–108.PubMedCrossRefGoogle Scholar
  17. Arguello-Castellanos, O. (1997). Evaluación de materiales de cacao por resistencia a Moniliophthora roreri en Santander. In Memorias del 3er SeminarioTécnico Regional 7 CORPOICA (pp. 23–29). Bucaramanga, Colombia: CORPOICA.Google Scholar
  18. Arneson, P. A. (2001). Plant disease epidemiology. In The plant health instructor. St. Paul, MN: The American Phytopathological Society.Google Scholar
  19. Arunga, E. E., Van Rheenen, H. A., & Owuoche, J. O. (2010). Diallel analysis of Snap bean (Phaseolus vulgaris L.) varieties for important traits. African Journal of Agricultural Research, 5(15), 1951–1957.Google Scholar
  20. Baker, R. E. D., & Holliday, P. (1957). Witches’ broom disease of cacao (Marasmius perniciosus Stahel). In Phytopathological papers (Vol. 2, p. 42). Surrey, Kew: Commonwealth Mycological Institute.Google Scholar
  21. Bartley, B. (1977). The status of genetic resistance in cacao to Crinipellis perniciosa (Stahel) Singer. In Proceedings 6th International Cocoa Research Conference (pp. 57–69). Caracas, Venezuela: Cocoa Producers’ Alliance.Google Scholar
  22. Bartley, B. G. D. (2005). The genetic diversity of cacao and its utilization. Wallingford, Oxfordshire, UK: CABI Publishing.CrossRefGoogle Scholar
  23. Baudouin, L., Baril, C., Clément-Demange, A., Leroy, T., & Paulin, D. (1997). Recurrent selection of tropical tree crops. Euphytica, 96(1), 101–114.CrossRefGoogle Scholar
  24. Bhattacharjee, R., & Kumar, P. L. (2007). Cacao. In C. Kole (Ed.), Genome mapping and molecular breeding in plants (Vol. 6, pp. 127–142). Berlin: Springer.Google Scholar
  25. Blanco, M. (1837). Flora de Filipinas. Manila: Lopez.Google Scholar
  26. Bos, I., & Caligari, P. (2008). Applications of quantitative genetic theory in plant breeding. In Selection methods in plant breeding (pp. 225–287). Dordrecht, The Netherlands: Springer.Google Scholar
  27. Bowers, J. H., Bailey, B. A., Hebbar, P. K., Sanogo, S., & Lumsden, R. D. (2001). The impact of plant diseases on world chocolate production. Plant Health Progress. doi: 10.1094/PHP-2001-0709-01-RV.Google Scholar
  28. Boza, E. J., Motamayor, J. C., Amores, F. M., Cedeño-Amador, S., Tondo, C. L., Livingstone, D. S., et al. (2014). Genetic characterization of the cacao cultivar CCN 51: Its impact and significance on global cacao improvement and production. Journal of the American Society for Horticultural Science, 139(2), 219–229.Google Scholar
  29. Briggs, F. N., & Knowles, P. F. (1977). Introduction to plant breeding. New York: Reinhold Publishing.Google Scholar
  30. Brown, J. S., Phillips-Mora, W., Power, E. J., Krol, C., Cervantes-Martinez, C., Motamayor, J. C., et al. (2007). Mapping QTLs for resistance to frosty pod and black pod diseases and horticultural traits in Theobroma cacao L. Crop Science, 47(5), 1851–1858.CrossRefGoogle Scholar
  31. Brown, J. S., Schnell, R., Motamayor, J., Lopes, U., Kuhn, D. N., & Borrone, J. W. (2005). Resistance gene mapping for witches’ broom disease in Theobroma cacao L. in an F2 population using SSR markers and candidate genes. Journal of the American Society for Horticultural Science, 130(3), 366–373.Google Scholar
  32. CacaoNet. (2012). In c. B. Laliberté (Ed.), A global strategy for the conservation and use of cacao genetic resources, as the foundation for a sustainable cocoa economy. Montpellier, France: Bioversity International.Google Scholar
  33. Caldwell, R. M., Schafer, J. F., Compton, L. E., & Patterson, F. L. (1958). Tolerance to cereal leaf rusts. Science, 128(3326), 714–715.PubMedCrossRefGoogle Scholar
  34. Capriles de Reyes, L., & Reyes, H. (1968). Contenido de polifenoles en dos variedades de Theobroma cacao L. y su relacion con la resistencia a Ceratocystis fimbriata. Agronomia Tropical, 18, 339–355.Google Scholar
  35. Cervantes-Martinez, C., Brown, J. S., Schnell, R. J., Phillips-Mora, W., Takrama, J. F., & Motamayor, J. C. (2006). Combining ability for disease resistance, yield, and horticultural traits of cacao (Theobroma cacao L.) clones. Journal of the American Society for Horticultural Science, 131(2), 231–241.Google Scholar
  36. Cilas, C., & Despréaux, D. (2004). Improvement of cocoa tree resistance to Phytophthora diseases. Versailles, France: Editions Quae.Google Scholar
  37. Cuatrecasas, J. (1964). Cacao and its allies. A taxonomic revision of the genus Theobroma. Contributions from the United States Herbarium, 35(6), 379–605.Google Scholar
  38. Dangl, J. L., & Jones, J. D. G. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411(6839), 826–833.PubMedCrossRefGoogle Scholar
  39. de Albuquerque, P. B., Silva, S. V. M., Luz, E. M. N., Pires, J., Vieira, A. C., Demétrio, C. B., et al. (2010). Novel sources of witches’ broom resistance (causal agent Moniliophthora perniciosa) from natural populations of Theobroma cacao from the Brazilian Amazon. Euphytica, 172(1), 125–138.CrossRefGoogle Scholar
  40. Delgado, J., Ampuero, E., & Doak, K. (1960).Posible evidencia de resistencia a la Monilia roreri Cif. y Par. en algunos clones de la Estación Experimental Tropical de Pichilingue. In Proceedings of the 8th Inter American Cacao Conference. Port-of-Spain, Trinidad & Tobago: Trinidad, Government Press.Google Scholar
  41. Dias, L. A. S. (2001). Novos rumos no melhoramento. In L. A. S. Dias (Ed.), Melhoramento genético do cacaueiro (pp. 217–287). Viçosa: Funape-UFG, Editora Folha de Viçosa Ltda.Google Scholar
  42. Dias, L. A. S., & Kageyama, P. Y. (1995). Combining-ability for cacao (Theobroma cacao L.) yield components under southern Bahia conditions. Theoretical and Applied Genetics, 90(3–4), 534–541.PubMedGoogle Scholar
  43. Dias, L. A. S., & Resende, M. D. V. (2001). Estratégias e métodos de seleção. In L. A. S. Dias (Ed.), Melhoramento genético do cacaueiro (pp. 217–287). Viçosa: Funape-UFG, Editora Folha de Viçosa Ltda.Google Scholar
  44. Dickinson, A., & Jinks, J. (1956). A generalised analysis of diallel crosses. Genetics, 41(1), 65.PubMedCentralPubMedGoogle Scholar
  45. Edwards, D. (1978). Studies on the manipulation of the timing of crop maturity of cocoa in Ecuador in relation to losses from pod diseases. The Journal of Horticultural Science, 53(3), 243–254.Google Scholar
  46. Efombagn, M., Nyassé, S., Sounigo, O., Kolesnikova-Allen, M., & Eskes, A. (2007). Participatory cocoa (Theobroma cacao) selection in Cameroon: Phytophthora pod rot resistant accessions identified in farmers’ fields. Crop Protection, 26(10), 1467–1473.CrossRefGoogle Scholar
  47. Efron, Y., Epaina, P., & Marfu, J. (2005). Breeding strategies to improve cocoa production in Papua New Guinea. In F. Bekele, M. End, & A. Eskes (Eds.), Proceedings of the International Workshop on Cocoa Breeding for Improved Production Systems (pp. 79–91). Accra, Ghana: INGENIC.Google Scholar
  48. End, M., Daymond, A. & Hadley, P. (2014). Technical guidelines for the safe movement of cacao germplasm. Revised from the FAO/IPGRI Technical Guidelines No. 20 (Second Update, August 2014). Montpellier, France: Global Cacao Genetic Resources Network (CacaoNet), Bioversity International. ISBN 978-92-9043-987-5.Google Scholar
  49. Enríquez, G., Brenes, O., & Delgado, J. (1982). Desarrollo e impacto de la moniliasis del cacao en Costa Rica. In Proceedings, Cartagena, Colombia, 18–23 Oct., 1981/8 International Cocoa Research Conference= Actes, Cartagena, Colombia, 18–23 oct., 1981/8 Conference internationale sur la recherche cacaoyere: Lagos. Lagos, Nigeria: Cocoa Producers’ Alliance.Google Scholar
  50. Enríquez, G., & Soria, J. (1999). Genetic research on cocoa diseases at CATIE (1960-1990). In Proceedings of the International Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement (pp. 33–40). Salvador, Bahia, Brazil: INGENIC.Google Scholar
  51. Epaina, P. (2014). Identification of molecular markers and quantitative trait loci linked to resistance to vascular streak dieback and Phytophthora pod rot of cacao (Theobroma cacao L). Sydney, Australia: University of Sydney, Faculty of Agriculture and Environment.Google Scholar
  52. Eskes, A. (2011). Collaborative and participatory approaches to cocoa variety improvement. Final report of the CFC/ICCO/Bioversity project on cocoa productivity and quality improvement: a participatory approach (2004–2010). Amsterdam, The Netherlands/London, UK/Rome, Italy: CFC/ICCO/Bioversity International.Google Scholar
  53. Eskes, B., & Efron, Y. (2006). Global approaches to cocoa germplasm utilization and conservation. Final report of the CFC/ICCO/IPGRI project on “Cocoa Germplasm Utilization and Conservation: A Global Approach” (1998–2004). Amsterdam, The Netherlands/London, UK/Rome, Italy: CFC/ICCO/IPGRI.Google Scholar
  54. Evans, H. C. (2007). Cacao diseases - the trilogy revisited. Phytopathology, 97(12), 1640–1643.PubMedCrossRefGoogle Scholar
  55. Evans, H., Edwards, D., & Rodriguez, M. (1977). Research on cocoa diseases in Ecuador: Past and present. PANS, 23(1), 68–80.Google Scholar
  56. Evans, H., Krauss, U., Rios Rutz, R., Zecevich Acosta, T., & Arévalo-Gardini, E. (1998). Cocoa in Peru. Cocoa Growers’ Bulletin, 51, 7–22.Google Scholar
  57. Evans, H. C., Stalpers, J. A., Samson, R. A., & Benny, G. L. (1978). On the taxonomy of Monilia roreri, an important pathogen of Theobroma cacao in South America. Canadian Journal of Botany, 56(20), 2528–2532.CrossRefGoogle Scholar
  58. Falconer, D., & Mackay, T. (1996). Introduction to quantitative genetics. Harlow, UK: Longman.Google Scholar
  59. Faleiro, F., Queiroz, V., Lopes, U., Guimarães, C., Pires, J., Yamada, M., et al. (2006). Mapping QTLs for Witches’ Broom (Crinipellis perniciosa) resistance in Cacao (Theobroma Cacao L.). Euphytica, 149(1-2), 227–235.CrossRefGoogle Scholar
  60. Ferreira, L. (1997). Cacau: clones tecnológicos. Biotecnologia Ciência & Desenvolvimento, 1, 20–24.Google Scholar
  61. Feys, B. J., & Parker, J. E. (2000). Interplay of signaling pathways in plant disease resistance. Trends in Genetics, 16(10), 449–455.PubMedCrossRefGoogle Scholar
  62. Fisher, H. H., Haun, J. R., & Ackerman, W. L. (1960). Cacao seedling production and distribution through plant quarantine. Cacao, 5(4), 1–8.Google Scholar
  63. Flor, H. (1947). Inheritance of reaction to rust in flax. Journal of Agricultural Research, 74, 241–262.Google Scholar
  64. Fonseca, S., de Almeida, L., & Andebrhan, T. (1985). Patogenicidade de isolados e avaliação de resistência de clones de cacau a Crinipellis perniciosa. In Proceedings, International Cocoa Research Conference. Lome, Togo: Cocoa Producers’ Alliance.Google Scholar
  65. Fonseca, S., & Wheeler, B. (1990). Assessing resistance to Crinipellis perniciosa using cocoa callus. Plant Pathology, 39(3), 463–471.CrossRefGoogle Scholar
  66. Fowler, R. L. (1948). Cacao cultivation and improvement programs.CrossRefGoogle Scholar
  67. Freeman, B. C., & Beattie, G. A. (2008). An overview of plant defenses against pathogens and herbivores. In The plant health instructor. St. Paul, MN: The American Phytopathological Society.Google Scholar
  68. Frias, G., Purdy, L., & Schmidt, R. (1995). An inoculation method for evaluating resistance of cacao to Crinipellis perniciosa. Plant Disease, 79(8), 787–791.CrossRefGoogle Scholar
  69. Frison, E. & Eskes, B. (1999). Improved use of germplasm for sustainable cocoa-based agro-forestry systems in Africa. In STCP Forum. Ibadan, Nigeria: IITA.Google Scholar
  70. Fulton, R. H. (1989). The cacao disease trilogy: Black pod, Monilia pod rot, and witches’-broom. Plant Disease, 73(7), 601–603.CrossRefGoogle Scholar
  71. Gallais, A. (1978). Amelioration des populations, methodes de selection et creation de varieties. 2. Le concept de valeur varietale de genotypes et ses consequences pour la selection recurrente. In Annales de l’Amelioration des Plantes.Google Scholar
  72. Gardella, D., Enriquez, G., & Saunders, J. (1982). Inheritance of clonal resistance to Ceratocystis fimbriata in cacao hybrids. In Proceedings of 8th International Cocoa Research Conference, Cartagena, Colombia, 18–23 Oct 1981 (pp. 695–702). Lagos, Nigeria: Cocoa Producers’ Alliance.Google Scholar
  73. Gill, N. (2014). Chocolate has new Latin king as Ecuador overtakes Brazil. Bloomberg Business. Google Scholar
  74. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.PubMedCrossRefGoogle Scholar
  75. Gregory, P. H. (1974). Phytophthora disease of cocoa. New York, London: Longman.Google Scholar
  76. Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences, 9(4), 463–493.Google Scholar
  77. Guest, D. (2007). Black pod: Diverse pathogens with a global impact on cocoa yield. Phytopathology, 97(12), 1650–1653.PubMedCrossRefGoogle Scholar
  78. Guest, D., & Keane, P. (2007). Vascular-streak dieback: A new encounter disease of cacao in Papua New Guinea and Southeast Asia caused by the obligate basidiomycete Oncobasidium theobromae. Phytopathology, 97(12), 1654–1657.PubMedCrossRefGoogle Scholar
  79. Ha, B.-K., Hussey, R. S., & Boerma, H. R. (2007). Development of SNP assays for marker-assisted selection of two southern root-knot nematode resistance QTL in soybean. Crop Science, 47(S2), S-73–S-82.CrossRefGoogle Scholar
  80. Hammond-Kosack, K. E., & Jones, J. (1996). Resistance gene-dependent plant defense responses. The Plant Cell, 8(10), 1773.PubMedCentralPubMedCrossRefGoogle Scholar
  81. Hammond-Kosack, K. E., & Parker, J. E. (2003). Deciphering plant–pathogen communication: Fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology, 14(2), 177–193.PubMedCrossRefGoogle Scholar
  82. Hardman, C. (2014). Giant on a pinhead – A profile of the cocoa sector. London, UK: Hardman & Co.Google Scholar
  83. Hasnah, Fleming, E. M., Villano, R. A., & Patrick, I. (2011). The potential of cacao agribusiness for poverty alleviation in West Sumatra. Canberra, ACT: Australian Agricultural and Resource Economics Society.Google Scholar
  84. Hebbar, P. K. (2007). Cacao diseases: A global perspective from an industry point of view. Phytopathology, 97(12), 1658–1663.PubMedCrossRefGoogle Scholar
  85. Holub, E. B., Beynon, L. J., & Crute, I. R. (1994). Phenotypic and genotypic characterization of interactions between isolates of Peronospora - parasitica and accessions of Arabidopsis - thaliana. Molecular Plant-Microbe Interactions, 7(2), 223–239.CrossRefGoogle Scholar
  86. Hunter, J. R. (1990). The status of cacao (Theobroma cacao, Sterculiaceae) in the Western Hemisphere. Economic Botany, 44(4), 425–439.CrossRefGoogle Scholar
  87. Hurst, W. J., Tarka, S. M., Powis, T. G., Valdez, F., & Hester, T. R. (2002). Archaeology: Cacao usage by the earliest Maya civilization. Nature, 418(6895), 289–290.PubMedCrossRefGoogle Scholar
  88. Irizarry, H., & Rivera, E. (1998). Early yield of five cacao families at three locations in Puerto Rico. Journal of agriculture of the University of Puerto Rico, 82(3-4), 163–171.Google Scholar
  89. Iton, E. (1966). Ceratocystis wilt. In Annual Report on Cacao Research for 1965 (Ed I. C. o. T. A. U. o. W. Indies, pp. 48–49). Trinidad and Tobago: University of West Indies.Google Scholar
  90. Iwaro, A., & Butler, D. (2000). Germplasm enhancement for resistance to black pod and witches’ broom diseases. In Proceedings of the 13th International Cocoa Research Conference: Towards the effective and optimum promotion of cocoa through research and development (pp. 3–10). Kota Kinabulu, Sabah, Malaysia: Cocoa Producers’ Alliance.Google Scholar
  91. Iwaro, A., Butler, D., & Eskes, A. (2006). Sources of resistance to Phytophthora pod rot at the International CocoaGenebank, Trinidad. Genetic Resources and Crop Evolution, 53(1), 99–109.CrossRefGoogle Scholar
  92. Iwaro, A., Sreenivasan, T. & Spence, J. (1996). Studies on black pod resistance in Trinidad. In Proceedings of Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement (pp. 91–101). Salvador-Bahia, Brazil: INGENIC.Google Scholar
  93. Ji, K., Zhang, D., Motilal, L., Boccara, M., Lachenaud, P., & Meinhardt, L. (2013). Genetic diversity and parentage in farmer varieties of cacao (Theobroma cacao L.) from Honduras and Nicaragua as revealed by single nucleotide polymorphism (SNP) markers. Genetic Resources and Crop Evolution, 60(2), 441–453.CrossRefGoogle Scholar
  94. Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329.PubMedCrossRefGoogle Scholar
  95. Jones, D. A., & Takemoto, D. (2004). Plant innate immunity–direct and indirect recognition of general and specific pathogen-associated molecules. Current Opinion in Immunology, 16(1), 48–62.PubMedCrossRefGoogle Scholar
  96. Keane, P. (1997). Diseases in natural plant communities. In J. F. Brown & H. J. Ogle (Eds.), Plant pathogens and plant diseases (pp. 518–532). Armidale, NSW, Australia: Rockvale Publications.Google Scholar
  97. Keane, P. (2012). Horizontal or generalized resistance to pathogens in plants. Rijeka, Croatia: INTECH Open Access Publisher.CrossRefGoogle Scholar
  98. Keen, N. (1990). Gene-for-gene complementarity in plant-pathogen interactions. Annual Review of Genetics, 24(1), 447–463.PubMedCrossRefGoogle Scholar
  99. Klement, Z. (1982). Hypersensitivity. In M. Mount & G. Lacy (Eds.), Phytopathogenic prokaryotes (Vol. 2). New York: Academic Press.Google Scholar
  100. Knight, C. (2000). Cocoa review: Supply and demand trends. Washington, DC: American Cocoa Research Institute.Google Scholar
  101. Kojima, K.-I., & Kelleher, T. M. (1963). A comparison of purebred and crossbred selection schemes with two populations of Drosophila pseudoobscura. Genetics, 48(1), 57.PubMedCentralPubMedGoogle Scholar
  102. Krauss, U., & Soberanis, W. (2001). Rehabilitation of diseased cacao fields in Peru through shade regulation and timing of biocontrol measures. Agroforestry Systems, 53(2), 179–184.CrossRefGoogle Scholar
  103. Kuhn, D., Heath, M., Wisser, R., Meerow, A., Brown, J., Lopes, U., et al. (2003). Resistance gene homologues in Theobroma cacao as useful genetic markers. Theoretical and Applied Genetics, 107(2), 191–202.PubMedCrossRefGoogle Scholar
  104. Kuhn, D., Livingstone, D., Main, D., Zheng, P., Saski, C., Feltus, F., et al. (2012). Identification and mapping of conserved ortholog set (COS) II sequences of cacao and their conversion to SNP markers for marker-assisted selection in Theobroma cacao and comparative genomics studies. Tree Genetics & Genomes, 8, 97–111.CrossRefGoogle Scholar
  105. Lachenaud, P., Eskes, A., N’goran, J., Clément, D., Kébé, I., Tahi, M., et al. (2000). Premier cycle de sélection récurrente en Côte d’Ivoire et choix des géniteurs du second cycle. In Proceedings of the 13th International Cocoa Research Conference (pp. 11–22). Kota Kinabalu, Sabah, Malaysia: Cocoa Producers’ Alliance.Google Scholar
  106. Laker, H., Sreenivasan, T., & Kumar, D. R. (1988a). Present status of witches’ broom disease of cocoa in Trinidad. International Journal of Pest Management, 34(3), 318–323.Google Scholar
  107. Laker, H. A., Sreenivasan, T. N., & Kumar, D. R. (1988b). The resistance of some cocoa clones to Crinipellis perniciosa in Trinidad. In International Cocoa Research Conference (pp. 637–641). Lagos, Nigeria: Cocoa Producers’ Alliance.Google Scholar
  108. Lanaud, C., Fouet, O., Clément, D., Boccara, M., Risterucci, A., Surujdeo-Maharaj, S., et al. (2009). A meta–QTL analysis of disease resistance traits of Theobroma cacao L. Molecular Breeding, 24(4), 361–374.CrossRefGoogle Scholar
  109. Lanaud, C., Risterucci, A. M., Pieretti, I., Falque, M., Bouet, A., & Lagoda, P. J. L. (1999). Isolation and characterization of microsatellites in Theobroma cacao L. Molecular Ecology, 8(12), 2141–2143.PubMedCrossRefGoogle Scholar
  110. Lass, T. (2004). Balancing cocoa production and consumption. In J. Flood & R. Murphy (Eds.), Cocoa futures: A source book of some important issues confronting the cocoa industry (pp. 8–15). Chinchiná: Commodities Press.Google Scholar
  111. Legg, J., & Lockwood, G. (1981). Resistance of cocoa to swollen‐shoot virus in Ghana. I. Field trials. Annals of Applied Biology, 97(1), 75–89.CrossRefGoogle Scholar
  112. Lenne, J. M., & Wood, D. (1991). Plant diseases and the use of wild germplasm. Annual Review of Phytopathology, 29(1), 35–63.CrossRefGoogle Scholar
  113. Leppik, E. E. (1970). Gene centers of plants as sources of disease resistance. Annual Review of Phytopathology, 8(1), 323–344.CrossRefGoogle Scholar
  114. Lima, E. M., Pereira, N. E., Pires, J. L., Barbosa, A. M. M., & Corrêa, R. X. (2013). Genetic molecular diversity, production and resistance to witches’ broom in cacao clones. Crop Breeding and Applied Biotechnology, 13(2), 127–135.CrossRefGoogle Scholar
  115. Livingstone, D., III, Freeman, B., Motamayor, J., Schnell, R., Royaert, S., Takrama, J., et al. (2012). Optimization of a SNP assay for genotyping Theobroma cacao under field conditions. Molecular Breeding, 30(1), 33–52.CrossRefGoogle Scholar
  116. Livingstone, D. S. I., Motamayor, J. C., Schnell, R. J., Cariaga, K., Freeman, B., Meerow, A. W., et al. (2011). Development of single nucleotide polymorphism markers in Theobroma cacao and comparison to simple sequence repeat markers for genotyping of Cameroon clones. Molecular Breeding, 27(1), 93–106.CrossRefGoogle Scholar
  117. Livingstone, D., Royaert, S., Stack, C., Mockaitis, K., May, G., Farmer, A., et al. (2015). Making a chocolate chip: Development and evaluation of a 6K SNP array for Theobroma cacao. DNA Research. doi: 10.1093/dnares/dsv009.PubMedCentralPubMedGoogle Scholar
  118. Lo Iacono, G., van den Bosch, F., & Gilligan, C. A. (2013). Durable resistance to crop pathogens: An epidemiological framework to predict risk under uncertainty. PLoS Computational Biology, 9(1), e1002870.PubMedCentralPubMedCrossRefGoogle Scholar
  119. Lopes, U. V., Monteiro, W. R., Pires, J. L., Clement, D., Yamada, M. M., & Gramacho, K. P. (2011). Cacao breeding in Bahia, Brazil: Strategies and results. Crop Breeding and Applied Biotechnology, 11(SPE), 73–81.CrossRefGoogle Scholar
  120. Machikowa, T., Saetang, C., & Funpeng, K. (2011). General and specific combining ability for quantitative characters in sunflower. Journal of Agricultural Science, 3(1), 91–95.CrossRefGoogle Scholar
  121. Maharaj, K., Maharaj, P., Bekele, F. L., Ramnath, D., Bidaisee, G., Bekele, I., et al. (2011). Trinidad selected hybrids: An investigation of the phenotypic and agro-economic traits of 20 selected cacao cultivars. Tropical Agriculture, 88(4), 175–185.Google Scholar
  122. Maloy, O. C. (2005). Plant disease management. In The plant health instructor (Vol. 10). St. Paul, MN: The American Phytopathological Society.Google Scholar
  123. Marelli, J.-P., Fernandes, L. d. S., Corrêa, F. M., Royaert, S. E., Schnell, R. J., Corrêa, R. X., et al. (2014). QTL mapping of Ceratocystis wilt resistance in Theobroma cacao. In Plant and Animal Genome XXII Conference: Plant and Animal Genome.Google Scholar
  124. Marelli, J.-P., Maximova, S. N., Gramacho, K. P., Kang, S., & Guiltinan, M. J. (2009). Infection biology of Moniliophthora perniciosa on Theobroma cacao and alternate solanaceous hosts. Tropical Plant Biology, 2(3-4), 149–160.CrossRefGoogle Scholar
  125. Martin, G. B., Bogdanove, A. J., & Sessa, G. (2003). Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology, 54(1), 23–61.PubMedCrossRefGoogle Scholar
  126. McDonald, B. A., & Linde, C. (2002). The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica, 124(2), 163–180.CrossRefGoogle Scholar
  127. McMahon, P., Purwantara, A., Susilo, A. W., Sukamto, S., Wahab, A., Purung, H. b., et al. (2010). On-farm selection for quality and resistance to pest/diseases of cocoa in Sulawesi: (ii) Quality and performance of selections against Phytophthora pod rot and vascular-streak dieback. International Journal of Pest Management, 56(4), 351–361.CrossRefGoogle Scholar
  128. Meinhardt, L. W., Rincones, J., Bailey, B. A., Aime, M. C., Griffith, G. W., Zhang, D., et al. (2008). Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: What’s new from this old foe? Molecular Plant Pathology, 9(5), 577–588.PubMedCrossRefGoogle Scholar
  129. Minifie, B. W. (1989). Chocolate, cocoa, and confectionery: Science and technology. New York: Van Nostrand Reinhold.CrossRefGoogle Scholar
  130. Monteiro, W. R., Lopes, U. V., & Clement, D. (2009). Genetic improvement in cocoa. In Breeding plantation tree crops: Tropical species (pp. 589–626). Berlin: Springer.CrossRefGoogle Scholar
  131. Monteiro, W. R., Lopes, U. V., & Pinto, L. (1995). Variedade Theobahia; histórico e características gerais. In Informação e Difusão (Vol. 1, pp. 1–2). CEPEC: Ilhéus, Bahia, Brazil.Google Scholar
  132. Motamayor, J., Lachenaud, P., da Silva e Mota, J., Loor, R., Kuhn, D., Brown, J., et al. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PloS One, 3, e3311.PubMedCentralPubMedCrossRefGoogle Scholar
  133. Motamayor, J., & Lanaud, C. (2002). Molecular analysis of the origin and domestication of Theobroma cacao L. In V. R. Rao, A. Brown, & M. Jackson (Eds.), Managing plant genetic diversity (pp. 77–87). Wallingford, Oxfordshire, UK: CABI Publishing.Google Scholar
  134. Motamayor, J. C., Mockaitis, K., Schmutz, J., Haiminen, N., Donald Iii, L., Cornejo, O., et al. (2013). The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biology, 14(6), r53.PubMedCentralPubMedCrossRefGoogle Scholar
  135. Motilal, L., & Butler, D. (2003). Verification of identities in global cacao germplasm collections. Genetic Resources and Crop Evolution, 50(8), 799–807.CrossRefGoogle Scholar
  136. Motilal, L. A., Zhang, D. P., Mischke, S., Meinhardt, L. W., & Umaharan, P. (2013). Microsatellite-aided detection of genetic redundancy improves management of the International Cocoa Genebank, Trinidad. Tree Genetics & Genomes, 9(6), 1395–1411.CrossRefGoogle Scholar
  137. Mysore, K. S., & Ryu, C.-M. (2004). Nonhost resistance: How much do we know? Trends in Plant Science, 9(2), 97–104.PubMedCrossRefGoogle Scholar
  138. Ndoumbé, M., Bieysse, D., & Cilas, C. (2001). Multi‐trait selection in a diallel crossing scheme of cocoa. Plant Breeding, 120(4), 365–367.CrossRefGoogle Scholar
  139. Nürnberger, T., Brunner, F., Kemmerling, B., & Piater, L. (2004). Innate immunity in plants and animals: Striking similarities and obvious differences. Immunological Reviews, 198(1), 249–266.PubMedCrossRefGoogle Scholar
  140. Ofori, A., Padi, F. K., Ameyaw, G. A., Dadzie, A. M., & Lowor, S. (2015). Genetic variation among cocoa (Theobroma cacao L.) families for resistance to cocoa swollen shoot virus disease in relation to total phenolic content. Plant Breeding, 134(4), 477–484.CrossRefGoogle Scholar
  141. Okey, E., & Sreenivasan, T. (1996). Salicylic acid: A factor in systemic resistance of cacao to Phytophthora palmivora. In Proceedings of the Brighton Crop Protection Conference (Vol. 3, pp. 955–960). Hampshire, UK: British Crop Protection Council.Google Scholar
  142. Oliver, R. P., & Ipcho, S. V. (2004). Arabidopsis pathology breathes new life into the necrotrophs‐vs.‐biotrophs classification of fungal pathogens. Molecular Plant Pathology, 5(4), 347–352.PubMedCrossRefGoogle Scholar
  143. Ordas, B., Butron, A., Alvarez, A., Revilla, P., & Malvar, R. (2012). Comparison of two methods of reciprocal recurrent selection in maize (Zea mays L.). Theoretical and Applied Genetics, 124(7), 1183–1191.PubMedCrossRefGoogle Scholar
  144. Osbourn, A. E. (1996). Preformed antimicrobial compounds and plant defense against fungal attack. The Plant Cell, 8(10), 1821.PubMedCentralPubMedCrossRefGoogle Scholar
  145. Padi, F. K., Domfeh, O., Takrama, J., & Opoku, S. (2013). An evaluation of gains in breeding for resistance to the cocoa swollen shoot virus disease in Ghana. Crop Protection, 51, 24–31.CrossRefGoogle Scholar
  146. Page, B., Casas, E., Heaton, M., Cullen, N., Hyndman, D., Morris, C., et al. (2002). Evaluation of single-nucleotide polymorphisms in for association with meat tenderness in cattle. Journal of Animal Science, 80(12), 3077–3085.PubMedGoogle Scholar
  147. Paim, V. R. L. d. M., Luz, E. D. M. N., Pires, J. L., Silva, S. D. V. M., Souza, J. T. d., Albuquerque, P. S. B., et al. (2006). Sources of resistance to Crinipellis perniciosa in progenies of cacao accessions collected in the Brazilian Amazon. Scientia Agricola, 63(6), 572–578.Google Scholar
  148. Parker, J. E., Feys, B. J., Van Der Biezen, E. A., Noël, L., Aarts, N., Austin, M. J., et al. (2000). Unravelling R gene‐mediated disease resistance pathways in Arabidopsis. Molecular Plant Pathology, 1(1), 17–24.PubMedCrossRefGoogle Scholar
  149. Parlevliet, J. E. (1979). Components of resistance that reduce the rate of epidemic development. Annual Review of Phytopathology, 17(1), 203–222.CrossRefGoogle Scholar
  150. Paulin, D., Ducamp, M., & Lachenaud, P. (2008). New sources of resistance to Phytophthora megakarya identified in wild cocoa tree populations of French Guiana. Crop Protection, 27(7), 1143–1147.CrossRefGoogle Scholar
  151. Phillips-Mora, W. (1999). Studies at CATIE on moniliasis resistance (Moniliophthora roreri (Cif. & Par.) Evans et al.). In Proceedings of the International Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement (pp. 111–117). Salvador, Bahia, Brazil: INGENIC.Google Scholar
  152. Phillips-Mora, W. (2010). The cacao breeding program at CATIE, Costa Rica. In The 18th Plant and Animal Genome Conference (p. 115).Google Scholar
  153. Phillips-Mora, W., Arciniegas-Leal, A., Mata-Quirós, A., & Motamayor-Arias, J. C. (2012). In CATIE (Ed.), Catálogo de clones de cacao seleccionados por el CATIE para siembras comerciales (p. 68). Turrialba, Costa Rica: CATIE.Google Scholar
  154. Phillips-Mora, W., & Castillo, J. (1999). Artificial inoculations in cacao with the fungi Moniliophthora roreri (Cif. Par) Evans et al. and Phytophthora palmivora (Butl.) Butler. In CATIE (Ed.), Actas IV Semana CientíficaTurrialba. Logros de la investigacion para un nuevo milenio. Programa de Investigación. Turrialba, Costa Rica: CATIE.Google Scholar
  155. Phillips‐Mora, W., Castillo, J., Krauss, U., Rodríguez, E., & Wilkinson, M. (2005). Evaluation of cacao (Theobroma cacao) clones against seven Colombian isolates of Moniliophthora roreri from four pathogen genetic groups. Plant Pathology, 54(4), 483–490.CrossRefGoogle Scholar
  156. Phillips-Mora, W., & Cerda Bustillos, R. (2009). Enfermedades del cacao en centroamérica: Catálogo. In CATIE (Ed.), Serie Técnica: Manual Técnico. CATIE: Turrialba, Costa Rica.Google Scholar
  157. Phillips-Mora, W., & Galindo, J. J. (1988). Evaluation of the cacao resistance to Moniliophthora roreri Cif. & Par. In Proceedings of the 10th International Cocoa Research Conference (pp. 685–689). Santo Domingo, Dominican Republic: Cocoa Producers’ Alliance.Google Scholar
  158. Phillips-Mora, W., & Galindo, J. (1989). Métodos de Inoculación y Evaluación de la Resistencia a Phytophthora palmivora en Frutos de Cacao (Theobroma cacao). Turrialba, 39(4), 488–496.Google Scholar
  159. Phillips-Mora, W., & Wilkinson, M. J. (2007). Frosty pod of cacao: A disease with a limited geographic range but unlimited potential for damage. Phytopathology, 97(12), 1644–1647.PubMedCrossRefGoogle Scholar
  160. Pinto, L. R. M., & Pires, J. L. (1998). Selecao de plantas de cacau resistentes a vassoura de bruxa. In Boletín Técnico. Ilhéus, Brazil: CEPLAC-CEPEC.Google Scholar
  161. Pires, J. L., Marita, J. M., Lopes, U. V., Yamada, M. M., Atiken, W., Melo, G., et al. (2000). Diversity for phenotypic traits and molecular markers in CEPEC’s germplasm collection in Bahia, Brazil. In Proceedings of the International Workshop on New Technologies and Cocoa Breeding (pp. 75–92). Kota Kinabalu, Sabah, Malaysia: INGENIC.Google Scholar
  162. Pires, J., Monteiro, W., Luz, E., Silva, S., Pinto, L., Figueira, A., et al. (1999). Cocoa breeding for witches’ broom resistance at CEPEC, Bahia, Brazil. In Proceedings of the International Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement (pp. 91–101). Salvador, Bahia, Brazil: INGENIC.Google Scholar
  163. Ploetz, R. (2007a). Diseases of tropical perennial crops: Challenging problems in diverse environments. Plant Disease, 91(6), 644–663.CrossRefGoogle Scholar
  164. Ploetz, R. C. (2007b). Cacao diseases: Important threats to chocolate production worldwide. Phytopathology, 97(12), 1634–1639.PubMedCrossRefGoogle Scholar
  165. Pokou, N., N’goran, J., Kébé, I., Eskes, A., Tahi, M., & Sangaré, A. (2008). Levels of resistance to Phytophthora pod rot in cocoa accessions selected on-farm in Côte d’Ivoire. Crop Protection, 27(3), 302–309.CrossRefGoogle Scholar
  166. Pokou, N., N’Goran, J., Lachenaud, P., Eskes, A., Montamayor, J., Schnell, R., et al. (2009). Recurrent selection of cocoa populations in Cote d’Ivoire: Comparative genetic diversity between the first and second cycles. Plant Breeding, 128(5), 514–520.CrossRefGoogle Scholar
  167. Posnette, A. (1940). Transmission of ‘swollen shoot’ disease of Cacao. Tropical Agriculture, Trinidad and Tobago, 17(5).Google Scholar
  168. Posnette, A. (1981). The role of wild hosts in cocoa swollen shoot disease. In Pests, pathogens and vegetation (pp. 71–78). London: Pitman.Google Scholar
  169. Posnette, A., & Todd, J. M. (1955). Virus diseases of cacao in West Africa IX. Strain variation and interference in virus 1A. Annals of Applied Biology, 43(3), 433–453.CrossRefGoogle Scholar
  170. Pound, F. (1934). The progress of selection. In Third Annual Report on Cacao Research 1933 (pp. 25–28). Trinidad and Tobago: Government Printery.Google Scholar
  171. Pound, F. (1935). The progress of selection. In Fourth Annual Report on Cacao Research 1934 (pp. 7–11). Trinidad and Tobago: Government Printery.Google Scholar
  172. Pound, F. (1936). The completion of selection. In Fifth Annual Report on Cacao Research 1935 (pp. 7–15). Trinidad and Tobago: Government Printery.Google Scholar
  173. Pound, F. J. (1938). Cacao and witchbroom disease (Marasmius perniciosus) of South America (With notes on other species of Theobroma. Report by Dr. F. J. Pound on a visit to Ecuador, the Amazon Valley, and Colombia. April 1937–April 1938, 58 pp). Port-of-Spain, Trinidad.Google Scholar
  174. Pound, F. J. (1943). Cacao and witches’ broom disease (Marasmius perniciosus) (Report on a recent visit to the Amazon territory of Peru, September, 1942-February, 1943, 14 pp). Trinidad and Tobago.Google Scholar
  175. Pugh, T., Fouet, O., Risterucci, A., Brottier, P., Abouladze, M., Deletrez, C., et al. (2004). A new cacao linkage map based on codominant markers: Development and integration of 201 new microsatellite markers. Theoretical and Applied Genetics, 108(6), 1151–1161.PubMedCrossRefGoogle Scholar
  176. Purdy, L., & Schmidt, R. (1996). Status of cacao witches’ broom: Biology, epidemiology, and management. Annual Review of Phytopathology, 34(1), 573–594.PubMedCrossRefGoogle Scholar
  177. Purseglove, J. W. (1968). Tropical crops. Dicotyledons 1 and 2. London: Longmans.Google Scholar
  178. Queiroz, V., Guimarães, C., Anhert, D., Schuster, I., Daher, R., Pereira, M., et al. (2003). Identification of a major QTL in cocoa (Theobroma cacao L.) associated with resistance to witches’ broom disease. Plant Breeding, 122(3), 268–272.CrossRefGoogle Scholar
  179. Rafalski, J. A. (2002). Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant Science, 162(3), 329–333.CrossRefGoogle Scholar
  180. Resende, M., & Bezerra, J. (1996). Crinipellis perniciosa de um novo hospedeiro (Solanum stipulaceum) induzindo reação de hipersensibilidade em Theobroma cacao. Fitopatologia Brasileira, 21(suplemento), 405.Google Scholar
  181. Resende, M., Flood, J., Ramsden, J., Rowan, M. G., Beale, M., & Cooper, R. M. (1996). Novel phytoalexins including elemental sulphur in the resistance of cocoa (Theobroma cocoa L.) to Verticillium wilt (Verticillium dahliae Kleb.). Physiological and Molecular Plant Pathology, 48(5), 347–359.CrossRefGoogle Scholar
  182. Rios-Ruiz, R. (1989). Manejo de enfermedades em cacao y café en Tingo Maria (p. 89). Tingo Maria: OSP/PNUD.Google Scholar
  183. Rios-Ruiz, R. (2001). Melhoramento para resistência a doenças. In L. A. S. Dias (Ed.), Melhoramento genético do cacaueiro (pp. 289–324). Viçosa: Funape-UFG, Editora Folha de Viçosa Ltda.Google Scholar
  184. Risterucci, A., Paulin, D., N’Goran, J., Ducamp, M., & Lanaud, C. (2000). Mapping of quantitative trait loci (QTLs) for resistance to Phytophthora in Theobroma cacao L. INGENIC Newsletter, 5, 9–10.Google Scholar
  185. Rivaie, A. A. (2013). Diallel analysis of cocoa (Theobroma cacao L.) resistance to Phytophthora palmivora in Indonesia. Journal of Biology, Agriculture and Healthcare, 3(3), 76–83.Google Scholar
  186. Robinson, R. (1969). Disease resistance terminology. Review of Applied Mycology, 48, 11–12.Google Scholar
  187. Rojas, E. I., Rehner, S. A., Samuels, G. J., Van Bael, S. A., Herre, E. A., Cannon, P., et al. (2010). Colletotrichum gloeosporioides sl associated with Theobroma cacao and other plants in Panama: Multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia, 102(6), 1318–1338.PubMedCrossRefGoogle Scholar
  188. Rorer, J. (1926). Ecuador cacao. Tropical Agriculture, Trinidad and Tobago, 3, 46–47.Google Scholar
  189. Russell, G. E. (1978). Plant breeding for pest and disease resistance. London, UK: Butterworth-Heinemann.Google Scholar
  190. Samuels, G. J., Ismaiel, A., Rosmana, A., Junaid, M., Guest, D., Mcmahon, P., et al. (2012). Vascular streak dieback of cacao in Southeast Asia and Melanesia: In planta detection of the pathogen and a new taxonomy. Fungal Biology, 116(1), 11–23.PubMedCrossRefGoogle Scholar
  191. Sánchez, J., Brenes, O., Phillips, W., & Enriquez, G. (1987). Methodology for inoculating pods with the fungus Moniliophthora (Monilia) roreri. In Proceedings of the 10th Cocoa Research Conference (pp. 467–471). Santo Domingo, Dominican Republic: Cocoa Producers’ Alliance.Google Scholar
  192. Santos, R. M., Lopes, U. V., Silva, S. D., Micheli, F., Clement, D., & Gramacho, K. P. (2012). Identification of quantitative trait loci linked to Ceratocystis wilt resistance in cacao. Molecular Breeding, 30(4), 1563–1571.CrossRefGoogle Scholar
  193. Santos, R. C. d., Pires, J. L., Lopes, U. V., Gramacho, K. P. G., Flores, A. B., Bahia, R. d. C. S., et al. (2005). Assessment of genetic diversity on a sample of cocoa accessions resistant to witches’ broom disease based on RAPD and pedigree data. Bragantia, 64(3), 361–368.Google Scholar
  194. Schafer, J. F. (1971). Tolerance to plant disease. Annual Review of Phytopathology, 9(1), 235–252.CrossRefGoogle Scholar
  195. Schnell, R., Olano, C., Brown, J., Meerow, A., Cervantes-Martinez, C., Nagai, C., et al. (2005). Retrospective determination of the parental population of superior cacao (Theobroma cacao L.) seedlings and association of microsatellite alleles with productivity. Journal of the American Society for Horticultural Science, 130(2), 181–190.Google Scholar
  196. Sena-Gomes, A., & Machado, R. (1994). Morphological traits in cocoa (Theobroma cacao L.) genotypes. I-Epidermal characteristics of leaves and pods. In M. C. Board (Ed.), International Workshop on Cocoa Breeding Strategies (pp. 181–189). Kuala Lumpur, Malaysia: INGENIC.Google Scholar
  197. Sena-Gomes, A., Passinho, H., & Machado, R. (1995). Depósito de cera epicuticular em diferentes genótipos de cacau. Informe Tecnico, 91, 58–59.Google Scholar
  198. Sena-Gomes, A., & Rocha, S. (1995). Caracterização estomática em folhas de diferentes genótipos de cacau. Informe Tecnico, 1991, 59–60.Google Scholar
  199. Shull, G. H., & Gowen, J. (1952). Beginnings of the heterosis concept. Heterosis, 14–48.Google Scholar
  200. Silva, D., Araújo, I., Branco, S., Aguilar‐Vildoso, C., Lopes, U., Marelli, J., et al. (2014). Analysis of resistance to witches’ broom disease (Moniliophthora perniciosa) in flower cushions of Theobroma cacao in a segregating population. Plant Pathology, 63(6), 1264–1271.CrossRefGoogle Scholar
  201. Silva, S. D. V. M., Pinto, L. R. M., de Oliveira, B. F., Damaceno, V. O., Pires, J. L., & dos Santos Dias, C. T. (2012). Resistência de progênies de cacaueiro à murcha-de-Ceratocystis. Tropical Plant Pathology, 37(3), 191–195.CrossRefGoogle Scholar
  202. Silva, C. R. S., Venturieri, G. A., & Figueira, A. (2004). Description of Amazonian Theobroma L. collections, species identification, and characterization of interspecific hybrids. Acta Botanica Brasilica, 18(2), 333–341.CrossRefGoogle Scholar
  203. Simmonds, N., & Smart, J. (1999). Principles of crop improvement (2nd ed.). Oxford, UK: NW Blackwell Science.Google Scholar
  204. Simons, M. D. (1969). Heritability of crown rust tolerance in oats. Phytopathology, 59(9), 1329–1333.Google Scholar
  205. Six, D. L., & Wingfield, M. J. (2011). The role of phytopathogenicity in bark beetle-fungus symbioses: A challenge to the classic paradigm. Annual Review of Entomology, 56, 255–272.PubMedCrossRefGoogle Scholar
  206. Soderholm, P. K., & Vasquez, F. (1985). Cacao germplasm collection and distribution in USA. Plant Genetic Resources Newsletter, 63, 8–14.Google Scholar
  207. Soria, J., & Salazar, G. (1965). Pruebas preliminares de resistencia a Ceratocystis fimbriata en clones e híbridos de cacao. Turrialba, 15(4), 290–295.Google Scholar
  208. Spence, J. A. (1961). Probable mechanism of resistance of varieties of cocoa to black pod disease caused by Phytophthora palmivora (Butl.) Butl. Nature, 192, 278.CrossRefGoogle Scholar
  209. Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89–100.PubMedCrossRefGoogle Scholar
  210. Sprague, G., & Tatum, L. A. (1942). General vs. specific combining ability in single crosses of corn. Journal of the American Society of Agronomy, 34(10), 923–932.CrossRefGoogle Scholar
  211. Sreenivasan, T. (1995). Grafting on very young cacao seedlings. In Annual Report 1994 (pp. 43–47). St. Augustine, Trinidad & Tobago: The University of the West Indies, Cocoa Research Unit.Google Scholar
  212. St. Leger, R., & Screen, S. (2001). Prospects for strain improvement of fungal pathogens of insects and weeds. In Fungi as biocontrol agents: Progress, problems and potential (pp. 219–237). Wallingford, Oxfordshire, UK: CABI Publishing.CrossRefGoogle Scholar
  213. Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G., & Jones, J. D. G. (1995). Molecular genetics of plant disease resistance. Science, 268(5211), 661.PubMedCrossRefGoogle Scholar
  214. Stevens, W. (1936). Swollen shoot and die-back—a new disease of cocoa. Gold Coast Farmer, 5, 144.Google Scholar
  215. Stukenbrock, E. H., & McDonald, B. A. (2008). The origins of plant pathogens in agro-ecosystems. Annual Review of Phytopathology, 46, 75–100.PubMedCrossRefGoogle Scholar
  216. Suárez-Capello, C. (1999). Monilia pod rot resistance in Ecuador. In International Workshop on the Contribution of Disease Resistance to Cocoa Variety Improvement (pp. 119–121). Bahía, Brazil: INGENIC.Google Scholar
  217. Surujdeo‐Maharaj, S., Umaharan, P., Butler, D., & Sreenivasan, T. (2003). An optimized screening method for identifying levels of resistance to Crinipellis perniciosa in cocoa (Theobroma cacao). Plant Pathology, 52(4), 464–475.CrossRefGoogle Scholar
  218. Surujdeo-Maharaj, S., Umaharan, P., & Butler, D. (2004). Assessment of resistance to witches’-broom disease in clonal and segregating populations of Theobroma cacao. Plant Disease, 88(8), 797–803.CrossRefGoogle Scholar
  219. Takrama, J., Dadzie, A. M., Opoku, S. Y., Padi, F. K., Adomako, B., Adu-Ampomah, Y., Livingstone, D. S., Motamayor, J. C., Schnell, R. J., Kuhn, D. N. (2012). Applying SNP marker technology in the cacao breeding programme in Ghana. African Crop Science Journal, 20(1).Google Scholar
  220. Takrama, J., Kun, J., Meinhardt, L., Mischke, S., Opoku, S. Y., Padi, F. K., Zhang, D. (2014). Verification of genetic identity of introduced cacao germplasm in Ghana using single nucleotide polymorphism (SNP) markers. African Journal of Biotechnology, 13(21), 2127–2136.CrossRefGoogle Scholar
  221. Tan, G.-Y., & Tan, W.-K. (1988). Genetic variation in resistance to vascular-streak dieback in cocoa (Theobroma cacao). Theoretical and Applied Genetics, 75(5), 761–766.CrossRefGoogle Scholar
  222. Tan, G.-Y., & Tan, W.-K. (1990). Additive inheritance of resistance to pod rot caused by Phytophthora palmivora in cocoa. Theoretical and Applied Genetics, 80(2), 258–264.PubMedCrossRefGoogle Scholar
  223. Thevenin, J.-M., Rossi, V., Ducamp, M., Doare, F., Condina, V., & Lachenaud, P. (2012). Numerous clones resistant to Phytophthora palmivora in the “Guiana” genetic group of Theobroma cacao L. PloS One, 7(7).Google Scholar
  224. Thevenin, J.-M., Umaharan, R., Surujdeo-Maharaj, S., Latchman, B., Cilas, C., & Butler, D. (2005). Relationships between black pod and witches’-broom diseases in Theobroma cacao. Phytopathology, 95(11), 1301–1307.PubMedCrossRefGoogle Scholar
  225. Thordal-Christensen, H. (2003). Fresh insights into processes of nonhost resistance. Current Opinion in Plant Biology, 6(4), 351–357.PubMedCrossRefGoogle Scholar
  226. Turnbull, C. J., Daymond, A. J., Lake, H., Main, B. E., Radha, K., Cryer, N. C., et al. (2010). The role of the international cocoa germplasm database and the international cocoa quarantine centre in information management and distribution of cocoa genetic resources. In 16th International Cocoa Research Conference. Denpasar, Bali, Indonesia: Cocoa Producers’ Alliance.Google Scholar
  227. Van der Plank, J. (1963). Plant diseases: Epidemics and control. London: Academic Press.Google Scholar
  228. Van der Plank, J. (1966). Horizontal (polygenic) and vertical (oligogenic) resistance against blight. American Potato Journal, 43(2), 43–52.CrossRefGoogle Scholar
  229. Van der Vossen, H. (1997). Strategies of variety improvement in cocoa with emphasis on durable disease resistance (p. 32). INGENIC (International Group for Genetic Improvement of Cocoa).Google Scholar
  230. van Ooijen, G., van den Burg, H. A., Cornelissen, B. J. C., & Takken, F. L. W. (2007). Structure and function of resistance proteins in solanaceous plants. Annual Review of Phytopathology, 45(1), 43–72.PubMedCrossRefGoogle Scholar
  231. Varghese, G., Abidin, Z. & Lam, C. (1987, October). Vascular streak dieback of cocoa in Asia and the prospects of chemical control. In 11th International Congress of Plant Protection, Manila (Philippines). Google Scholar
  232. Walton, J. D. (2001). Secondary metabolites: Killing pathogens. New York: Wiley.Google Scholar
  233. Ward, H. M. (1889). Croonian Lecture: On some relations between host and parasite in certain epidemic diseases of plants. Proceedings of the Royal Society of London, 47(286-291), 393–443.CrossRefGoogle Scholar
  234. WCF. (2015). About cocoa (Vol. 2015). World Cocoa Foundation.Google Scholar
  235. Wheeler, B., & Mepsted, R. (1988). Pathogenic variability amongst isolates of Crinipellis perniciosa from cocoa (Theobroma cacao). Plant Pathology, 37(4), 475–488.CrossRefGoogle Scholar
  236. Whitlock, B. A., & Baum, D. A. (1999). Phylogenetic relationships of Theobroma and Herrania (Sterculiaceae) based on sequences of the nuclear gene Vicilin. Systematic Botany, 24, 128–138.CrossRefGoogle Scholar
  237. Wood, G. A. R., & Lass, R. (1985). Cocoa. London: Blackwell Science.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Osman A. Gutiérrez
    • 1
    Email author
  • Alina S. Campbell
    • 2
  • Wilbert Phillips-Mora
    • 3
  1. 1.USDA-ARS Subtropical Horticulture Research StationMiamiUSA
  2. 2.IFAS, Department of Plant Pathology, Tropical Research & Education CenterUniversity of FloridaHomesteadUSA
  3. 3.Tropical Agricultural Research and Higher Education Center (CATIE)TurrialbaCosta Rica

Personalised recommendations