Skip to main content

Biological Control of Cacao Diseases

  • Chapter
  • First Online:
Cacao Diseases

Abstract

This chapter discusses the advances in biological control of cacao diseases over the last 15 years. Most attention has been focused on biological control of frosty pod rot (Moniliophthora roreri), witches’ broom (Moniliophthora perniciosa) and black pod disease (Phytophthora spp.). Research on biocontrol of other diseases in the cacao phyllosphere or rhizosphere is scarce or in its infancy. There is, however, a steady increase in information regarding the factors influencing and the mechanisms underlying biological control of cacao diseases as well as practical aspects such as inoculum production, formulation and application. There has been a clear shift away from inundative approaches using epiphytic BCAs towards more classical biocontrol approaches using bacterial and fungal endophytes as well as vesicular arbuscular mycorrhiza. These have the advantage that they can permanently establish themselves in the cacao tree. Moreover, besides direct competition for space and nutrients, antibiosis and mycoparasitism, through induced resistance and growth promotion, endophytes have a larger arsenal of mechanisms through which they can help protect their host. Endophytic BCAs could thus provide more effective and sustainable disease control. Recent advances in our understanding of the mechanisms through which endophytic biocontrol agents can reduce pest and disease impact provide possibilities for innovative disease control strategies, including combination therapies together with natural or chemical products. Continued work on production, formulation and application is also necessary in order for biocontrol to become economically interesting. However, biological control will not become a stand-alone solution for disease control but should become part of integrated pest management strategies, with cultural management as a central and reinforcing pillar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Search algorithm on Google, Google Scholar and DuckDuckGo was Theobroma (biocontrol OR biological control) (Fusarium OR Trachysphaera OR Botryodiplodia OR Macrophoma OR Geotrichum OR Calonectria OR virus OR Phytoplasm OR bacteria or viral OR Corticum OR Colletotrichum OR Phellinus OR Rigidoporus or Armillaria OR Pseudomonas).

  2. 2.

    Widmer's (2014) Trichoderma asperellum isolate 02-64 corresponds with isolate PR11.

  3. 3.

    (http://www.dropdata.net/mycoharvester/).

  4. 4.

    See http://www.freshfruitportal.com/2013/06/05/brazil-to-launch-biofungicide-against-cacao-disease/?country=others (last consulted on 11 June 2015).

References

  • Ackonnor, J. B. (1997, November). Preliminary studies on breeding and predation on Scymnus (Pullus) sp. and Hyperaspis egregia Mader on Planococcoides njalensis (Laing). In L. A. A. Ollennu, G. K. Owusu, & B. Padi (Eds.), Proceedings of the First International Cacao Pests and Diseases Seminar (pp. 238–241), Accra, Ghana.

    Google Scholar 

  • Adebola, M. O., & Amadi, J. E. (2010). Screening three Aspergillus species for antagonistic activities against the cacao black pod organism (Phytophthora palmivora). Agriculture and Biology Journal of North America, 1, 362–365.

    Article  Google Scholar 

  • Adebola, M. O., & Amadi, J. E. (2012). Studies on Penicillium digitatum, Botryodiploidia theobromae, Alternaria tenuis and Trichoderma harzianum for biocontrol of Phytophthora palmivora cacao black pod disease pathogen. American-Eurasian Journal of Agronomy, 5(2), 30–34.

    Google Scholar 

  • Adedeji, A. R., Odebode, A. C., & Agbeniyi, S. O. (2008). Bioassay of five Trichoderma strains against Phytophthora megakarya (cacao pod-rot) in Nigeria. Scientific Research and Essay, 3, 190–194.

    Google Scholar 

  • Agbeniyi, S. O., Adedeji, A. R., & Adeniyi, D. O. (2014). On-farm evaluation of Trichoderma asperellum on the suppression of Phytophthora megakarya causing pod rot of Theobromae cacao in Nigeria. British Journal of Applied Science & Technology, 4, 3153–3159.

    Article  Google Scholar 

  • Akrofi, A. Y., Govers, F., Awuah, R. T., & Raaijmakers, J. M. (2012). Exploiting microbial diversity in cacao ecosystems in Ghana to control Phytophthora pod rot disease. Global Advanced Research Journal of Agricultural Science, 1, 305–308.

    Google Scholar 

  • Allen, D. J., Lenné, J. M., & Waller, J. M. (1999). Pathogen biodiversity: Its nature, characterization and consequences. In D. Wood & J. M. Lenné (Eds.), Agrobiodiversity. characterization, utilization and management (pp. 123–153). Wallingford, UK: CABI Publishing.

    Google Scholar 

  • Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems & Environment, 74, 19–31.

    Article  Google Scholar 

  • Ambang, Z., Ngoh Dooh, J. P., Essono, G., Bekolo, N., Chewachong, G., & Asseng, C. C. (2010). Effect of Thevetia peruviana seeds extract on in vitro growth of four strains of Phytophthora megakarya. Plant Omics Journal, 3, 70–76.

    CAS  Google Scholar 

  • Ameyaw, G. A., Dzahini-Obiatey, H. K., & Domfeh, O. (2014). Perspectives on cacao swollen shoot virus disease (CSSVD) management in Ghana. Crop Protection, 65, 64–70.

    Article  Google Scholar 

  • Amin, N., Salam, M., Junaid, M., Asman, & Baco, M. S. (2014). Isolation and identification of endophytic fungi from cacao plant resistant VSD M.05 and cacao plant susceptible VSD M.01 in South Sulawesi, Indonesia. International Journal of Current Microbiology and Applied Sciences, 3, 459–467.

    Google Scholar 

  • Aneja, M., Gianfagna, T. J., & Hebbar, P. K. (2005). Trichoderma harzianum produces nonanoic acid, an inhibitor of spore germination and mycelial growth of two cacao pathogens. Physiological and Molecular Plant Pathology, 67, 304–307.

    Article  CAS  Google Scholar 

  • Appiah, A. A., Flood, J., Archer, S. A., & Bridge, P. D. (2004). Molecular analysis of the major Phytophthora species on cacao. Plant Pathology, 53, 209–219.

    Article  CAS  Google Scholar 

  • Aragaki, M., & Uchida, J. (2001). Morphological distinctions between Phytophthora capsici and P. tropicalis sp. nov. Mycologia, 93, 137–145.

    Article  Google Scholar 

  • Argyle, T., George, A., ten Hoopen, G. M., & Krauss, U. (2003, October). Rhizosphere populations of antagonistic fungi of cacao (Theobroma cacao) clones tolerant or susceptible to Rosellinia root rot. In A. Y. Akrofi, J. B. Ackonor, & L. A. A. Ollennu (Eds.), 4th INCOPED Seminar (Oral and published paper, pp. 104–111), Accra, Ghana.

    Google Scholar 

  • Arnold, A. E., & Herre, E. A. (2003). Canopy cover and leaf age affect colonization by tropical endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia, 95, 388–398.

    Article  PubMed  Google Scholar 

  • Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D., & Kursar, T. A. (2000). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3, 267–274.

    Article  Google Scholar 

  • Arnold, A. E., Mejía, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N., et al. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 100, 15649–15654.

    Article  CAS  Google Scholar 

  • Asante, S. K., & Ackonor, J. B. (1996). Natural enemies of cacao mealybugs (Annual Report, p. 158). Tafo-Akim, Ghana: Cacao Research Institute of Ghana.

    Google Scholar 

  • Avelino, J., ten Hoopen, G. M., & DeClerck, F. (2011). Ecological mechanisms for pest and disease control in coffee and cacao agroecosystems of the Neotropics. In B. Rapidel, F. DeClerck, J.-F. Le Coq, & J. Beer (Eds.), Ecosystems services from agriculture and agroforestry (p. 320). London, UK: Earthscan.

    Google Scholar 

  • Backman, P. A., & Sikora, R. A. (2008). Endophytes: An emerging tool for biological control. Biological Control, 46, 1–3.

    Article  Google Scholar 

  • Bae, H., Sicher, R. C., Kim, M. S., Kim, S.-H., Strem, M. D., Melnick, R. L., et al. (2009). The beneficial endophyte Trichoderma hamatum isolate Dis 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60, 3279–3295.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bagla, P. (2010). Hardy cotton-munching pests are latest blow to GM crops. Science, 327, 1439.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, B. A., Bae, H., Melnick, R., & Crozier, J. (2011). The endophytic Trichoderma hamatum isolate DIS 219b enhances seedling growth and delays the onset of drought stress in Theobroma cacao. In A. M. Pirttilä & A. C. Franks (Eds.), Endophytes of forest trees: Biology and applications (Forestry Sciences 80, pp. 157–172). Berlin, Germany: Springer Science.

    Chapter  Google Scholar 

  • Bailey, B. A., Bae, H., Strem, M. D., Crozier, J., Thomas, S. E., Samuels, G. J., et al. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46, 24–35.

    Article  Google Scholar 

  • Bailey, B. A., Bae, H., Strem, M. D., Roberts, D. P., Thomas, S. E., Samuels, G. J., et al. (2006). Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta, 224, 1449–1464.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, B. A., Strem, M. D., & Wood, D. (2009). Trichoderma species form endophytic associations within Theobroma cacao trichomes. Mycological Research, 11, 1365–1376.

    Article  Google Scholar 

  • Bailey, G. W., & White, J. L. (1970). Factors influencing the adsorption, desorption, and movement of pesticides in soil. Residue Reviews/Rückstands-Berichte, 32, 29–92.

    PubMed  CAS  Google Scholar 

  • Barbosa, P. (Ed.). (1999). Conservation biological control (p. 396). San Diego, CA: Academic Press.

    Google Scholar 

  • Bastos, C. N. (1988). Resultados preliminaries sobre a eficacia de Trichoderma viride no controle da vassoura-de-bruxa (Crinipellis perniciosa) do cacaueiro. Fitopatologia Brasileira, 13, 340–342.

    Google Scholar 

  • Bastos, C. N. (1996a). Mycoparasitic nature of the antagonism between Trichoderma viride and Crinipellis perniciosa. Fitopatologia Brasileira, 21, 50–54.

    Google Scholar 

  • Bastos, C. N. (1996b). Potencial de Trichoderma viride no controle da vassourade-bruxa (Crinipellis perniciosa) do cacaueiro. Fitopatologia Brasileira, 21, 509–512.

    Google Scholar 

  • Bastos, C. N. (2012). Isolate of Trichoderma brevicompactum for the control of cacao witches broom disease: Preliminary results. Agrotropica, 24, 21–26.

    Google Scholar 

  • Bateman, R. (2004). The use of narrow-angle cone nozzles to spray cacao pods and other slender biological targets. Crop Protection, 23, 989–999. doi:10.1016/j.cropro.2004.02.014.

    Article  Google Scholar 

  • Bateman, R. P., & Alves, R. T. (2000). Delivery system for mycoinsecticides using oil-based formulations (CABI Bioscience Biopesticide Programme, pp. 163–170). Ascot, Berks, UK: CABI.

    Google Scholar 

  • Bateman, R., Arias, D., Guerrero, R., Hebbar, P., & Súarez Capello, C. (2005a). Assessing the options for spray interventions to control the Moniliophthora disease complex of cacao in Ecuador. Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Ecuador. Accessed January 23, 2015 from http://www.iniap.gob.ec/nsite/images/documentos/ASSESSING_OPTIONS_SPRAY_in.pdf

  • Bateman, R., Hidalgo, E., García, J., Arroyo, C., ten Hoopen, G. M., Adonijah, V., et al. (2005b). Application of chemical and biological agents for the management of frosty pod rot (Moniliophthora roreri) in Costa Rican cacao (Theobroma cacao). Annals of Applied Biology, 147, 129–138.

    Article  Google Scholar 

  • Begoude, B. A. D., Lahlali, R., Friel, D., Tondje, P. R., & Jijakli, M. H. (2007). Response surface methodology study of the combined effects of temperature, pH, and aw on the growth rate of Trichoderma asperellum. Journal of Applied Microbiology, 103, 845–854.

    Article  PubMed  CAS  Google Scholar 

  • Benitez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260.

    PubMed  CAS  Google Scholar 

  • Boa, E. R. (2000) Tree health and agroforestry (Final Technical Report, DIFD Crop Protection Programme, R7499, p. 89).

    Google Scholar 

  • Brimner, T. A., & Boland, G. J. (2003). A review of the non-target effects of fungi used to biologically control plant diseases. Agriculture, Ecosystems and Environment, 100, 3–16.

    Article  Google Scholar 

  • Butler, D. R. (1980). Dew and thermal lag: Measurements and an estimate of wetness duration on cocoa pods. Quarterly Journal of the Royal Meteorological Society, 106, 539–550.

    Article  Google Scholar 

  • Cadavid, S. (1995). Rosellinia in cacao. Cacao Growers’ Bulletin, 49, 52–59.

    Google Scholar 

  • Carroll, G. C. (1986). The biology of endophytism in plants with particular reference to woody perennials. In N. J. Fokkema & J. van den Heuvel (Eds.), Microbiology of the phylloplane (pp. 205–222). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Carroll, G. C. (1988). Fungal endophytes in stems and leaves: From latent pathogen to mutualistic symbiont. Ecology, 69, 2–9.

    Article  Google Scholar 

  • Carver, T. L. W., & Gurr, S. J. (2006). Filamentous fungi on plant surfaces. In M. Riederer & C. Müller (Eds.), Biology of the plant cuticle (Annual Plant Reviews, Vol. 23, p. 456). London, UK: Blackwell Publishing.

    Google Scholar 

  • Castro, B. L. (1995). Antagonismo de algunos aislamientos de Trichoderma koningii, originados en suelo Colombiano contra Rosellinia bunodes, Sclerotinia sclerotiorum y Pythium ultimum. Fitopatologia Colombiana, 19, 7–18.

    Google Scholar 

  • Chet, I., Harman, G. E., & Baker, R. (1981). Trichoderma hamatum: Its hyphal interactions with 319 Rhizoctonia solani and Pythium spp. Microbial Ecology, 7, 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Chulan, A. H., & Martin, K. (1992). The vesicular-arbuscular (VA) mycorrhiza and its effects on growth of vegetatively propagated Theobroma cacao L. Plant Soil, 144, 227–233.

    Article  Google Scholar 

  • Chulan, A. H., & Ragu, P. (1986). Growth response of Theobroma cacao L. seedlings to inoculation with vesicular-arbuscular mycorrhizal fungi. Plant Soil, 96, 279–285.

    Article  Google Scholar 

  • Cock, M. W., van Lenteren, J., Brodeur, J., Barratt, B. P., Bigler, F., Bolckmans, K., et al. (2009). The use and exchange of biological control agents for food and agriculture (Commission on Genetic Resources for Food and Agriculture, FAO Background Study Paper No. 47). http://ftp.fao.org/docrep/fao/meeting/017/ak569e.pdf

  • Coll, M. (2009). Conservation biological control and the management of biological control services: Are they the same? Phytoparasitica, 37, 205–208.

    Article  Google Scholar 

  • Cook, R. J., Bruckart, W. L., Coulson, J. R., Goettel, M. S., Humber, R. A., Lumsden, R. D., et al. (1996). Safety of microorganisms intended for pest and disease control: A framework for scientific evaluation. Biological Control, 7, 333–351.

    Article  Google Scholar 

  • Costa, J. C. B., & Bezerra, J. L. (1994). Antagonismo de isolados de Cladosporium, Gliocladium, Penicillium, Streptomyces e Trichoderma sobre Crinipellis perniciosa na região cacueira da Bahia. In 4th Siconbiol Simposio de controle biológico de doenças de Plantas Anais: Sessão de Pôsteres. 59 (abstract only).

    Google Scholar 

  • Costa, J. C. B., Bezerra, J. L., & Cazorla, I. M. (1996). Controle biológico da vassoura-de-bruxa do cacueiro na Bahia com Trichoderma polysporum. Fitopatologia Brasileira, 21 (suppl.), 397 (abstract only).

    Google Scholar 

  • Coulibaly, O., Mbila, D., Sonwa, D. J., Adesina, A., & Bakala, J. (2002). Responding to economic crisis in sub-Saharan Africa: New farmer-developed pest management strategies in cacao-based plantation in Southern Cameroon. Integrated Pest Management Reviews, 7, 165–172.

    Article  Google Scholar 

  • Crowder, D. W., & Harwood, J. D. (2014). Promoting biological control in a rapidly changing world. Biological Control, 75, 1–7.

    Article  Google Scholar 

  • Crozier, J., Arroyo, C., Morales, H., Melnick, R. L., Strem, M. D., Vinyard, B. T., et al. (2015). The influence of formulation on Trichoderma biological activity and frosty pod rot management in Theobroma cacao. Plant Pathology. doi:10.1111/ppa.12383.

    Google Scholar 

  • Crozier, J., Thomas, S. E., Aime, M. C., Evans, H. C., & Holmes, K. A. (2006). Molecular characterization of fungal endophytic morphospecies isolates from stems and pods of Theobroma cacao. Plant Pathology, 55, 783–791.

    Article  CAS  Google Scholar 

  • Cuenca, G., Herrera, R., & Meneses, E. (1990). Effects of VA mycorrhiza on the growth of cacao seedlings under nursery conditions in Venezuela. Plant Soil, 126, 71–78.

    Article  CAS  Google Scholar 

  • Cuervo-Parra, J. A., Sanchez-Lopez, V., Romero-Cortes, T., & Ramírez-Lepe, M. (2014). Hypocrea Trichoderma viridescens ITV43 with potential for biocontrol of Moniliophthora roreri Cif & Par, Phytophthora megasperma and Phytophthora capsici. African Journal of Microbiology Research, 8, 1704–1712.

    Article  Google Scholar 

  • de Marco, J. L., & Felix, C. R. (2002). Characterization of a protease produced by a Trichoderma harzianum isolate which controls cacao plant witches’ broom disease. BMC Biochemistry. http://www.biomedcentral.com/1471-2091/3/3

  • de Souza, J. T., Bailey, B. A., Pomella, A. W. V., Erbe, E. F., Murphy, C. A., Bae, H., et al. (2008). Colonization of cacao seedlings by Trichoderma stromaticum, a mycoparasite of the witches’ broom pathogen, and its influence on plant growth and resistance. Biological Control, 46, 36–45.

    Article  Google Scholar 

  • de Souza, J. T., Pomella, A. W. V., Bowers, J. H., Pirovani, C. P., Loguercio, L. L., & Hebbar, P. K. (2006). Genetic and biological diversity of Trichoderma stromaticum, a mycoparasite of the cacao witches’ broom pathogen. Phytopathology, 96, 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Deberdt, P., Mfegue, C. V., Tondje, P. R., Bon, M. C., Ducamp, M., Hurard, C., et al. (2008). Impact of environmental factors, chemical fungicide and biological control on cacao pod production dynamics and black pod disease (Phytophthora megakarya) in Cameroon. Biological Control, 44, 149–159.

    Article  Google Scholar 

  • Dik, A. J., Koning, G., & Kohl, J. (1999). Evaluation of microbial antagonists for biological control of Botrytis cinerea stem infection in cucumber and tomato. European Journal of Plant Pathology, 105, 115–122.

    Article  Google Scholar 

  • Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., et al. (2011). Trichoderma: The genomics of opportunistic success. Nature Reviews Microbiology, 9, 749–759.

    Article  PubMed  CAS  Google Scholar 

  • Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.

    Article  PubMed  CAS  Google Scholar 

  • Efombagn, M. I. B., Nyassé, S., Bieysse, D., & Sounigo, O. (2013). Analysis of the resistance to Phytophthora pod rot within local selections of cacao (Theobroma cacao L.) for breeding purpose in Cameroon. Journal of Plant Breeding and Crop Science, 4, 111–119.

    Article  Google Scholar 

  • Eilenberg, J., Hajek, A., & Lomer, C. (2001). Suggestions for unifying the terminology in biological control. BioControl, 46, 387–400.

    Article  Google Scholar 

  • Elad, Y., Zimand, G., Zaqs, Y., Zuriel, S., & Chet, I. (1993). Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mold (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathology, 42, 324–332.

    Article  CAS  Google Scholar 

  • Evans, H. C. (1981a). Witches’ broom disease: A case study’. Cocoa Growers’ Bulletin, 5–19.

    Google Scholar 

  • Evans, H. C. (1981b). Pod rot of cacao caused by Moniliophthora (Monilia) roreri (Phytopathological Papers 24). Kew: CAB Commonwealth Mycological Institute.

    Google Scholar 

  • Evans, H. C. (1998). Disease and sustainability in the cocoa agroecosystem. In First International Workshop on Sustainable Cocoa Growing. Panama City: Smithsonian Tropical Research Institute, Smithsonian Migratory Bird Center.

    Google Scholar 

  • Evans, H. C. (1999). Classical biological control. In P. Hebbar & U. Krauss (Eds.), Research methodology in biocontrol of plant diseases with special reference to fungal diseases in cacao (pp. 29–43). Turrialba: CATIE.

    Google Scholar 

  • Evans, H. C., Edwards, D. F., & Rodriguez, M. (1977). Research on cacao diseases in Ecuador: Past and Present. Pest Abstracts and News Summaries (PANS), 23, 68–80.

    Google Scholar 

  • Evans, H. C., Holmes, K. A., & Thomas, S. E. (2003a). Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cacao diseases. Mycological Progress, 2, 149–160.

    Article  Google Scholar 

  • Evans, H. C., Holmes, K. A., & Thomas, S. E. (2003b, October). Crowd control: Natural enemy biodiversity in a coevolved forest host-pathosystem and its potential as a source of novel biocontrol agents for frosty pod rot of cacao. In A. Y. Akrofi, J. B. Ackonor, & L. A. A. Ollennu (Eds.), Proceedings of INCOPED 4th International Seminar on Cacao Pest and Diseases (pp. 126–135). Accra, Ghana: Ghana Cacao Board.

    Google Scholar 

  • Everett, K. R., Vanneste, J. L., Hallett, I. C., & Walter, M. (2005). Ecological alternatives for disease management of fruit rot pathogens. New Zealand Plant Protection, 58, 55–61.

    Google Scholar 

  • Falcäo, L. L., Silva-Werneck, J. O., Vilarinho, B. R., da Silva, J. P., Pomella, A. W. V., & Marcellino, L. H. (2014). Antimicrobial and plant growth-promoting properties of the cacao endophyte Bacillus subtilis ALB629. Journal of Applied Microbiology, 116, 1584–1592.

    Article  PubMed  Google Scholar 

  • Fitt, B. D. L., McCartney, H. A., & Walklate, P. J. (1989). The role of rain dispersal of pathogen inoculum. Annual Review of Phytopathology, 27, 241–270.

    Article  Google Scholar 

  • Flood, J., Guest, D., Holmes, K. A., Keane, P., Padi, B., & Sulistyowati, E. (2004). Cocoa under attack. In J. Flood & R. Murphy (Eds.), Cocoa futures (p. 164). Chincina, CO: CABI-FEDERACAFE.

    Google Scholar 

  • Flores, D., Ramírez, C., & Galindo, J. J. (1994). Ultrastructure of cacao fruits (Theobroma cacao) of cultivars with contrasting susceptibility to Moniliophthora roreri. Revista Biología Tropical, 42, 29–37.

    Google Scholar 

  • Freeman, S., & Rodriguez, R. J. (1993). Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science, 260, 75–78.

    Article  PubMed  CAS  Google Scholar 

  • Gidoin, C., Babin, R., Bagny Beilhe, L., Cilas, C., ten Hoopen, G. M., & Ngo Bieng, M. A. (2014). Tree spatial structure, host composition and resource availability influence mirid density or black pod prevalence in cacao agroforests in Cameroon. PLoS One, 9(10), e109405.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gockowski, J., Tchatat, M., Dondjang, J.-P., Hietet, G., & Fouda, T. (2010). An empirical analysis of the biodiversity and economic returns to cacao agroforests in Southern Cameroon. Journal of Sustainable Forestry, 29, 637–670.

    Article  Google Scholar 

  • Gorentz, A. M. (1974). Chemical control of black pod: Fungicides. In P. H. Gregory (Ed.), Phytophthora disease of cacao (pp. 235–258). London, UK: Longman.

    Google Scholar 

  • Graham, J. H. (2001). What do root pathogens see in mycorrhizas? New Phytology, 149, 357–359.

    Article  Google Scholar 

  • Guest, D. (2007). Black pod: Diverse pathogens with global impact on cacao yield. Phytopathology, 97, 1650–1653.

    Article  PubMed  Google Scholar 

  • Guest, D., & Keane, P. (2007). Vascular-streak dieback: A new encounter disease of cacao in Papua New Guinea and Southeast Asia caused by the obligate basidiomycete Oncobasidium theobromae. Phytopathology, 97, 1654–1657.

    Article  PubMed  Google Scholar 

  • Hanada, R. E., de Souza, T. J., Pomella, A. W. V., Hebbar, P. K., Pereira, J. O., Ismaiel, A., et al. (2008). Trichoderma martiale sp. Nov. a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycological Research, 112, 1335–1343.

    Article  PubMed  CAS  Google Scholar 

  • Hanada, R. E., Pomella, A. W. V., Costa, H. S., Bezerra, J. L., Loguercio, L. L., & Pereira, J. O. (2010). Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biology, 114, 901–910.

    Article  PubMed  Google Scholar 

  • Hanada, R. E., Pomella, A. W. V., Soberanis, W., Loguercio, L. L., & Pereira, J. O. (2009). Biocontrol potential of Trichoderma martiale against the black-pod disease (Phytophthora palmivora) of cacao. Biological Control, 50, 143–149.

    Article  Google Scholar 

  • Hannusch, D. J., & Boland, G. J. (1996a). Influence of air temperature and relative humidity and biological control agents on grey mold of bean. European Journal of Plant Pathology, 102, 133–142.

    Article  Google Scholar 

  • Hannusch, D. J., & Boland, G. J. (1996b). Influence of air temperature and relative humidity on biological control of white mold of bean (Sclerotinia sclerotiorum). Phytopathology, 86, 156–162.

    Article  Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species - opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56.

    Article  PubMed  CAS  Google Scholar 

  • Harman, G. E., & Kubicek, C. P. (1998). Trichoderma and Gliocladium (Enzymes, biological control and commercial applications, Vol. 2, p. 393). London, UK: Taylor and Francis.

    Google Scholar 

  • Hermosa, R., Belen Rubio, M., Cardoza, R. E., Nicolas, C., Monte, E., & Gutierrez, S. (2013). The contribution of Trichoderma to balancing the costs of plant growth and defense. International Microbiology, 16, 69–80.

    PubMed  CAS  Google Scholar 

  • Herre, E. A., Mejía, L. C., Kyllo, D. A., Rojas, E., Maynard, Z., Butler, A., et al. (2007). Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology, 88, 550–558.

    Article  PubMed  Google Scholar 

  • Hidalgo, E., Bateman, R., Krauss, U., ten Hoopen, G. M., & Martínez, A. (2003). A field investigation into delivery systems for agents to control Moniliophthora roreri. European Journal of Plant Pathology, 109, 953–961.

    Article  Google Scholar 

  • Hjeljord, L., & Tronsmo, A. (1998). Trichoderma and Gliocladium in biological control: an overview. In G. E. Harman & C. P. Kubicek (Eds.), Trichoderma and Gliocladium (Enzymes, Biological Control and Commercial Applications, Vol. 2, p. 393). London, UK: Taylor and Francis.

    Google Scholar 

  • Hokkanen, H. M. T., & Lynch, J. M. (1995). Biological control: Benefits and risks. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Holmes, K. A., Evans, H. C., Wayne, S., & Smith, J. (2003). Irvingia, a forest host of the cocoa black-pod pathogen, Phytophthora megakarya, in Cameroon. Plant Pathology, 52, 486–490.

    Article  Google Scholar 

  • Holmes, K. A., Krauss, U., Samuels, G., Bateman, R. P., Thomas, S. E., Crozier, J., et al. (2006, October). Trichoderma ovalisporum: A potential biocontrol agent of frosty pod rot (Moniliophthora roreri) (Vol. II, pp. 1001–1006). In Proceedings of 15th International Cacao Research Conference, San José, Costa Rica.

    Google Scholar 

  • Holmes, K. A., Schroers, H.-J., Thomas, S. E., Evans, H. C., & Samuels, G. J. (2004). Taxonomy and biocontrol potential of a new species of Trichoderma from the Amazon basin of South America. Mycological Progress, 3, 199–210.

    Article  Google Scholar 

  • Hughes, J. d’A., & Ollenu, L. A. A. (1994). Mild strain protection of cacao in Ghana against cacao swollen shoot virus – a review. Plant Pathology, 43, 442–457.

    Google Scholar 

  • Iritié, M. S., Bi, Z., Tié, B. T., Zirihi Guédé, N., Kouadjo Zaka, C. G., Fossou Kouakou, R., et al. (2012). Arbuscular mycorhhizal fungi associated with Theobroma cacao L. in the region of Yamoussoukro (Côte d’Ivoire). African Journal of Agricultural Research, 7, 993–1001.

    Google Scholar 

  • Jeffries, P., & Barea, J. M. (2012). Arbuscular mycorrhiza: A key component of sustainable plant-soil ecosystems. In B. Hock (Ed.), The Mycota. A comprehensive treatise on fungi as experimental systems for basic and applied research (pp. 51–75). Berlin, Germany: Springer.

    Google Scholar 

  • Kebe, I. B., Mpika, J., N’Guessan, K. F., Hebbar, P. K., Samuels, G. S., & Ake, S. (2009). Isolement et identification de microorganismes indigènes de cacaoyères en Côte d’Ivoire et mise en évidence de leurs effets antagonistes vis-àvis de Phytophthora palmivora, agent de la pourriture brune des cabosses. Sciences & Nature, 6, 71–82.

    Article  Google Scholar 

  • Klapwijk, J. (2011). The use and exchange of biological control agents for food and agriculture (FAO background study paper 47). http://www.fao.org/nr/cgrfa/cgrfa-back/en/?no_cache=1

  • Kloepper, J. W., Tuzun, S., & Kuć, J. (1992). Proposed definitions related to induced disease resistance. Biocontrol Science and Technology, 2, 349–351.

    Article  Google Scholar 

  • Konam, J. K., & Guest, D. I. (2002). Leaf litter mulch reduces the survival of Phytophthora palmivora under cacao trees in Papua New Guinea. Australasian Journal of Plant Pathology, 31, 381–383.

    Article  Google Scholar 

  • Koranteng, S. L., & Awuah, R. T. (2011). Biological suppression of black pod lesion development on detached cocoa pods. African Journal of Agricultural Research, 6, 67–72.

    Google Scholar 

  • Krauss, U. (1994). Spore movement of Mucor hiemalis in the rhizosphere of groundnut in natural field conditions. In T. Martin (Ed.), Poster and published paper: Seed Treatment - Progress and Prospects (pp. 339–344). Farnham, UK: British Crop Protection Council.

    Google Scholar 

  • Krauss, U. (2004). Diseases in tropical agroforestry landscapes – The role of biodiversity. In G. Schroth, G. A. B. Fonseca, C. A. Harvey, C. Gascon, H. F. Vasconcelos, & A. M. N. Izac (Eds.), Agroforestry and biological conservation in tropical landscapes (pp. 397–412). Washington, DC: Island Press.

    Google Scholar 

  • Krauss, U., & Deacon, J. W. (1994). Water-facilitated transport of a pimaricin-resistant strain of Mucor hiemalis in the rhizosphere of groundnut (Arachis hypogaea L.) in a Malawian luvisol. Soil Biology & Biochemistry, 26, 977–985.

    Article  Google Scholar 

  • Krauss, U., Hidalgo, E., Bateman, R., Adonijah, V., Arroyo, C., García, J., et al. (2010). Improving the formulation and timing of application of chemical and endophytic biocontrol agents against frosty pod rot (Moniliophthora roreri) in cacao (Theobroma cacao). Biological Control, 54, 230–240.

    Article  CAS  Google Scholar 

  • Krauss, U., Martínez, A., Hidalgo, E., ten Hoopen, G. M., & Arroyo, C. (2002). Two-step liquid/solid state mass production of Clonostachys rosea. Mycological Research, 106, 1449–1454.

    Article  CAS  Google Scholar 

  • Krauss, U., & Soberanis, W. (2001a). Biocontrol of cacao pod diseases with mycoparasite mixtures. Biological Control, 22, 149–158.

    Article  Google Scholar 

  • Krauss, U., & Soberanis, W. (2001b). Rehabilitation of diseased cacao fields in Peru through shade regulation and timing of biocontrol measures. Agroforestry Systems, 53, 179–184.

    Article  Google Scholar 

  • Krauss, U., & Soberanis, W. (2002). Effect of fertilization and biocontrol application frequency on cacao pod diseases. Biological Control, 24, 82–89.

    Article  Google Scholar 

  • Krauss, U., ten Hoopen, G. M., Hidalgo, E., Martínez, A., Arroyo, C., García, J., et al. (2003). Manejo integrado de la moniliasis (Moniliophthora roreri) del cacao (Theobroma cacao) en Talamanca, Costa Rica. Revista Agroforestería en las Americas, 10, 52–58.

    Google Scholar 

  • Krauss, U., ten Hoopen, G. M., Hidalgo, E., Martínez, A., Stirrup, T., Arroyo, C., et al. (2006). The effect of cane molasses amendment on biocontrol of frosty pod rot (Moniliophthora roreri) and black pod (Phytophthora spp.) of cacao (Theobroma cacao) in Panama. Biological Control, 39, 232–239.

    Article  Google Scholar 

  • Krauss, U., ten Hoopen, M., Martínez, A., Rees, R., Stirrup, T., Argyle, T., et al. (2013). Mycoparasitism by Clonostachys byssicola and Clonostachys rosea on Trichoderma spp. and implication for the design of mixed biocontrol agents. Biological Control, 67, 317–327.

    Article  Google Scholar 

  • Last, F. T. (1955). Seasonal incidence of Sporobolomyces on cereal leaves. Transactions of the British Mycological Society, 38, 221–239.

    Article  Google Scholar 

  • Leach, A. W., Mumford, J. D., & Krauss, U. (2002). Modelling Moniliophthora roreri in Costa Rica. Crop Protection, 21, 317–326.

    Article  Google Scholar 

  • Leite, H. A. C., Silva, A. B., Gomes, F. P., Gramacho, K. P., Faria, J. C., de Souza, J. T., et al. (2013). Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systematically colonize seedlings and promote growth. Applied Microbiology and Biotechnology, 97, 2639–2651.

    Article  PubMed  CAS  Google Scholar 

  • Leveau, J. H. J. (2006). Microbial communities in the phyllosphere. In M. Riederer & C. Müller (Eds.), Biology of the plant cuticle (Annual Plant Reviews, Vol. 23, p. 456). London, UK: Blackwell Publishing.

    Google Scholar 

  • Lindow, S. E., & Andersen, G. L. (1996). Influence of immigration on epiphytic bacterial populations on Naval orange leaves. Applied and Environmental Microbiology, 62, 2978–2987.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Loguercio, L. L., de Carvalho, A. C., Niella, G. R., de Souza, J. T., & Pomella, A. W. V. (2009a). Selection of Trichoderma stromaticum isolates for efficient biological control of witches’ broom disease in cacao. Biological Control, 51, 130–139.

    Article  Google Scholar 

  • Loguercio, L. L., Santos, L. S., Niella, G. R., Miranda, R. A. C., de Souza, J. T., Collins, R. T., et al. (2009b). Canopy-microclimate effects on the antagonism between Trichoderma stromaticum and Moniliophthora perniciosa in shaded cacao. Plant Pathology, 58, 1104–1115.

    Article  Google Scholar 

  • Lutz, M. P., Wenger, S., Maurhofer, M., Défago, G., & Duffy, B. (2004). Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiology Ecology, 48, 447–455.

    Article  PubMed  CAS  Google Scholar 

  • Macagnan, D., Romeiro, R. S., de Souza, J. T., & Pomella, A. W. V. (2006). Isolation of actinomycetes and endospore-forming bacteria from the cacao pod surface and their antagonistic activity against the witches’ broom and black pod pathogens. Phytoparasitica, 34, 122–132.

    Article  Google Scholar 

  • Mbarga, J. B., Begoude, B. A. D., Ambang, Z., Meboma, M., Kuate, J., Schiffers, B., et al. (2014). A new oil-based formulation of Trichoderma asperellum for the biological control of cacao black pod disease caused by Phytophthora megakarya. Biological Control, 77, 15–22.

    Article  Google Scholar 

  • Mbarga, J. B., ten Hoopen, G. M., Kuate, J., Adiobo, A., Ngonkeu, M. E. L., Ambang, Z., et al. (2012). Trichoderma asperellum: a potential biocontrol agent for Pythium myriotylum, causal agent of cocoyam (Xanthosoma sagittifolium) root rot disease. Crop Protection, 36, 18–22.

    Article  Google Scholar 

  • Medeiros, F. H. V., Pomella, A. W. V., de Souza, J. T., Niella, G. R., Valle, R., Bateman, R. P. B., et al. (2010). A novel, integrated method for management of witches’ broom disease in cacao in Bahia, Brazil. Crop Protection, 29, 704–711.

    Article  CAS  Google Scholar 

  • Mejía, L. C., Herre, E. A., Sparks, J. P., Winter, K., García, M. N., Van Bael, S. A., et al. (2014). Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Frontiers in Microbiology, 5, 1–16.

    Google Scholar 

  • Mejía, L. C., Rojas, E. I., Maynard, Z., Van Bael, S., Arnold, A. E., Hebbar, P., et al. (2008). Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control, 46, 4–14.

    Article  Google Scholar 

  • Melnick, R. L., Suárez, C., Bailey, B. A., & Backman, P. A. (2011). Isolation of endophytic endospore-forming bacteria from Theobroma cacao as potential biological control agents of cacao diseases. Biological Control, 57, 236–245.

    Article  Google Scholar 

  • Melnick, R. L., Zidack, N. K., Bailey, B. A., Maximova, S. N., Guiltinan, M., & Backman, P. A. (2008). Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biological Control, 46, 46–56.

    Article  Google Scholar 

  • Mendoza-Garcia, R. A., ten Hoopen, G. M., Kass, D. C. J., Sánchez Garita, V. A., & Krauss, U. (2003). Evaluation of mycoparasites as biocontrol agents of Rosellinia root rot in Cacao. Biological Control, 27, 210–227.

    Article  Google Scholar 

  • Merchán, V. M. (1993). Experiencias en el manejo de Rosellinia. Ascolfi Informa, 19, 23–24.

    Google Scholar 

  • Mfegue, C. V. (2012). Origine et mécanismes de dispersion des populations de Phytophthora megakarya, pathogène du cacaoyer au Cameroun. PhD thesis, SupAgro, Montpellier, France, 185p.

    Google Scholar 

  • Millennium Ecosystems Assessment. (2005). Ecosystems and human well-being. Synthesis (p. 115). Washington, DC: Island Press.

    Google Scholar 

  • Monteith, J. L., & Butler, D. R. (1979). Dew and thermal lag: Model for cocoa pods. Quarterly Journal of the Royal Meteorological Society, 105, 207–215.

    Article  Google Scholar 

  • Mpika, J., Kébé, I. B., Issali, A. E., N’Guessan, F. K., Druzhinina, S., Komon-Zélazowska, M., et al. (2009). Antagonist potential of Trichoderma indigenous isolates for biological control of Phytophthora palmivora the causative agent of black pod disease on cacao (Theobroma cacao L.) in Côte d’Ivoire. African Journal of Biotechnology, 8, 5280–5293.

    Google Scholar 

  • Najár, T., & Thomas, S. (2001). El efecto de los microorganismos eficaces en la suppression del hongo Moniliphthora roreri bajo condiciones del laboratorio y campo con inoculación artificial. Tesis de Licenciatura en Ingeniería Agrónoma (p. 60). Guápiles, Costa Rica: EARTH.

    Google Scholar 

  • Ndoumbe-Nkeng, M., Cilas, C., Nyemb, E., Nyassé, S., Bieysse, D., Flori, A., et al. (2004). Impact of removing diseased pods on cacao black pod caused by Phytophthora megakarya and on cacao production in Cameroon. Crop Protection, 5, 415–424.

    Article  Google Scholar 

  • Ndoungue Djeumekop, M. M., Tchana, T., Nana, W., Techou, Z., Petchayo, S., Fontem, A. D., et al. (2012, October). Effet des traitements du sol sur le développement de l’épidémie de la pourriture brune (Phytophthora megakarya) du cacaoyer au Cameroun. Poster presentation at the 17th International Cacao Research Conference, Yaoundé, Cameroon.

    Google Scholar 

  • Ngo Bieng, M. A., Gidoin, C., Avelino, J., Cilas, C., Deheuvels, O., & Wery, J. (2013). Diversity and spatial clustering of shade trees affect cacao yield and pathogen pressure in Costa Rican agroforests. Basic and Applied Ecology, 14, 329–336. doi:10.1016/j.baae.2013.03.003.

    Article  Google Scholar 

  • Nyadanu, D., Akromah, R., Adomako, B., Awuah, R. T., Kwoseh, C., Dzahini-Obiatey, H., et al. (2012). Effects of cacao swollen shoot virus infection on foliar resistance to P. palmivora and P. megakarya and its implications in selection and breeding against black pod disease. International Journal of Plant Pathology, 3, 45–55.

    Article  Google Scholar 

  • Nyassé, S., Grivet, L., Risterucci, A. M., Blaha, G., Berry, D., Lanaud, C., et al. (1999). Diversity of Phytophthora megakarya in Central and West Africa revealed by isozyme and RAPD markers. Mycological Research, 103, 1225–1234.

    Article  Google Scholar 

  • Okumoto, S., Ramón, J., Moya, F., Najar, T., Thomas, S., Palacios, R., et al. (2002, August). Aplicaciones de EM5 para el control de la enfermedad de monilia (Moniliophthora roreri) en la producción de cacao orgánico (p. 46). Proceedings of the 14th IFOAM Organic World Congress, “Cultivating Communities” Victoria Conference Centre CA. Ottawa: Ottawa Canadian Organic Growers (COG).

  • Omacini, M., Eggers, T., Bonkowski, M., Gange, A. C., & Jones, T. H. (2006). Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Functional Ecology, 20, 226–232.

    Article  Google Scholar 

  • Opoku, I. Y., Appiah, A. A., & Akrofi, A. Y. (2000). Phytophthora megakarya: A potential threat to the cacao industry in Ghana. Ghana Journal of Agricultural Science, 33, 237–248.

    Article  Google Scholar 

  • Pakora, G. A. (2013). Biocontrole de la pourriture brune du cacaoyer par trios isolats de Trichoderma, etude des metabolites secondaires actifs et de leur biotransformation. PhD thesis, Université Pierre et Marie Curie, France, p. 188.

    Google Scholar 

  • Petrini, O. (1991). Fungal endophytes of tree leaves. In J. H. Andrew & S. S. Hirano (Eds.), Microbial ecology of leaves (pp. 179–197). New York, NY: Springer.

    Chapter  Google Scholar 

  • Phillips-Mora, W., Arciniegas-Leal, A., Mata-Quiros, A., & Motamayor-Arias, J. C. (2012). Catálogo de Clones de Cacao Selecionados por el CATIE para Siembras Comerciales. Turrialba, Costa Rica: CATIE. ISBN 978-9977-57-571-1.

    Google Scholar 

  • Phillips-Mora, W., Castillo, J., Krauss, U., Rodríguez, E., & Wilkinson, M. J. (2005). Evaluation of cacao (Theobroma cacao) clones against seven Colombian isolates of Moniliophthora roreri from four pathogen genetic groups. Plant Pathology, 54, 483–490.

    Article  CAS  Google Scholar 

  • Pohe, J., & Agneroh, T. A. (2013). Neem seed oil, an alternative fungicide to copper oxide in the control of brown rot of cacao pods in Cote d’Ivoire. Journal of Applied Biosciences, 62, 4644–4652.

    Article  Google Scholar 

  • Pomella, A. W. V., de Souza, J. T., Niella, G. R., Bateman, R. P., Hebbar, P. K., Loguercio, L. L., et al. (2007). The use of Trichoderma stromaticum in the management of witches’ broom disease of cacao in Bahia state, Brazil. In C. Vincent, M. Goetel, & G. Lazarovits (Eds.), Biological control: A global perspective-case studies from around the world (pp. 210–2017). Wallingford, UK: CABI Publishing.

    Chapter  Google Scholar 

  • Poppenborg, P., & Hölscher, D. (2009). The influence of emergent trees on rainfall distribution in a cacao agroforest (Sulawesi, Indonesia). Flora, 204, 730–736.

    Article  Google Scholar 

  • Pozo, M. J., & Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 10, 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Pozo, M. J., Jung, S. C., Martínez-Medina, A., López-Ráez, J. A., Azcón-Aguilar, C., & Barea, J.-M. (2013). Root allies: Arbuscular mycorrhizal fungi help plants to cope with biotic stresses. Soil Biology, 37, 289–307.

    Article  CAS  Google Scholar 

  • Ratnadass, A., Fernandes, P., Avelino, J., & Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agronomy for Sustainable Development, 32, 273–303.

    Article  Google Scholar 

  • Ravnskov, S., Jensen, B., Knudsen, I. M. B., Bødker, L., Jensen, D. F., Karliński, et al. (2006). Soil inoculation with the biocontrol agent Clonostachys rosea and the mycorrhizal fungus Glomus intraradices results in mutual inhibition, plant growth promotion and alteration of soil microbial communities. Soil Biology & Biochemistry, 38, 3453–3462.

    Article  CAS  Google Scholar 

  • Ristaino, J. B., & Gumpertz, M. L. (2000). New frontiers in the study of dispersal and spatial analysis of epidemics caused by species in the genus Phytophthora. Annual Review of Phytopathology, 38, 541–576.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues, K. F., Petrini, O., & Leuchtermann, A. (1995). Variability among isolates of Xylaria cubensis as determined by isozyme analysis and somatic incompatibility tests. Mycologia, 87, 592–596.

    Article  Google Scholar 

  • Rojas, E. I., Rehner, S. A., Samuels, G. J., Van Bael, S. A., Herre, E. A., Cannon, P., et al. (2010). Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panama: Multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes. Mycologia, 102, 1318–1338. doi:10.3852/09-244.

    Article  PubMed  Google Scholar 

  • Rosmana, A., Samuels, G. J., Ismaiel, A., Ibrahim, E. S., Chaverri, P., Herawati, Y., et al. (2015). Trichoderma asperellum: A dominant endophyte species in cacao grown in Sulawesi with potential for controlling vascular streak dieback disease. Tropical Plant Pathology, 40, 19–25.

    Article  Google Scholar 

  • Rubini, M. R., Silva-Ribeiro, R. T., Pomella, A. W. V., Maki, C. S., Araújo, W. L., Santos, D. R., et al. (2005). Diversity of endophytic fungal community of cacao (Theobroma cacao) and biological control of Crinipellis perniciosa, causal agent of witches’ broom disease. International Journal of Biological Sciences, 1, 24–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ruinen, J. (1956). Occurrence of Beijerinckia species in the phyllosphere. Nature, 177, 220–221.

    Article  Google Scholar 

  • Ruiz, S. L., & Leguizamón, C. J. (1996). Efecto del contenido de materia org_anica del suelo sobre el control de Rosellinia bunodes con Trichoderma spp. Cenicafé, 47, 179–186.

    Google Scholar 

  • Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H.-Y., & Hunt, M. D. (1996). Systemic acquired resistance. The Plant Cell, 8, 1809–1819.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Samuels, G. J., Dodd, S. L., Lu, B.-S., Petrini, O., Schroers, H.-J., & Druzhinina, I. S. (2006a). The Trichoderma koningii aggregate species. Studies in Mycology, 56, 67–133.

    Article  PubMed Central  PubMed  Google Scholar 

  • Samuels, G. J., & Ismaiel, A. (2009). Trichoderma evansii and T. lieckfeldtiae two new T. hamatum-like species. Mycologia, 101, 142–156.

    Article  PubMed  CAS  Google Scholar 

  • Samuels, G. J., Ismaiel, A., Rosmana, A., Junaid, M., Guest, D., McMahon, P., et al. (2012). Vascular streak dieback of cacao in Southeast Asia and Melanesia: In planta detection of the pathogen and a new taxonomy. Fungal Biology, 116, 11–23. doi:10.1016/j.funbio.2011.07.009.

    Article  PubMed  Google Scholar 

  • Samuels, G. J., Lieckfeldt, E., & Nirenberg, H. I. (1999). Trichoderma asperellum, a new species with warted conidia, and redescription of T. viride. Sydowia, 51, 71–88.

    Google Scholar 

  • Samuels, G. J., Pardo-Schultheiss, R., Hebbar, K. P., Lumsden, R. D., Bastos, C. N., Costa, J. C., et al. (2000). Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen. Mycological Research, 104, 760–764.

    Article  Google Scholar 

  • Samuels, G. J., Suarez, C., Solis, K., Holmes, K. A., Thomas, S. E., Ismaiel, A., et al. (2006b). Trichoderma theobromicola and T. paucisporum: Two new species isolated from cacao in South America. Mycological Research, 110, 381–392.

    Article  PubMed  Google Scholar 

  • Schisler, D. A., Slininger, P. J., Behle, R. W., & Jackson, M. A. (2004). Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology, 94, 1267–1271.

    Article  PubMed  CAS  Google Scholar 

  • Schloen, M., Louafi, S., & Dedeurwaerdere, T. (2011). Access and benefit-sharing for genetic resources for food and agriculture–current use and exchange practices, commonalities, differences and user community needs. Commission on Genetic Resources for Food and Agriculture (FAO Background Study Paper #59). http://www.fao.org/docrep/meeting/023/mb720e.pdf

  • Schmidt, C., Clough, Y., & Vidal, S. V. (2010). Diversity and distribution patterns of foliar fungal endophytes in Theobroma cacao in central Sulawesi and interactions between endophytes and host plant. Thesis der Fakultät für Agrarwissenschaften Universität Göttingen.

    Google Scholar 

  • Schnell, R. J., Kuhn, D. N., Brown, J. S., Olano, C. T., Phillips-Mora, W., Amores, F. M., et al. (2007). Development of a marker assisted selection program for cacao. Phytopathology, 97, 1664–1669.

    Article  PubMed  CAS  Google Scholar 

  • Schroth, G., Krauss, U., Gasparotto, L., Aguilar, J. A. D., & Vohland, K. (2000). Pests and diseases in agroforestry systems in the humid tropics. Agroforestry Systems, 50, 199–241.

    Article  Google Scholar 

  • Sharma, P. (2011). Complexity of Trichoderma-Fusarium interaction and manifestation of biological control. Australian Journal of Crop Science, 5, 1027–1038.

    CAS  Google Scholar 

  • Snoeck, D., Abolo, D., & Jagoret, P. (2010). Temporal changes in VAM fungi in the cacao agroforestry systems of central Cameroon. Agroforestry Systems, 78, 323–328.

    Article  Google Scholar 

  • Soberanis, W., Rios, R., Arévalo, E., Zúñiga, L., Cabezas, O., & Krauss, U. (1999). Increased frequency of phytosanitary pod removal in cacao (Theobroma cacao) increases yield economically in eastern Peru. Crop Protection, 18, 677–685.

    Article  Google Scholar 

  • Sonwa, D. J., Coulibaly, O., Adesina, A. A., Weise, S. F., & Tchatat, M. (2002). Integrated pest management in cacao agroforests in southern Cameroon: Constraints and overview. Integrated Pest Management Reviews, 7, 191–199.

    Article  Google Scholar 

  • Soumaila, Z. B. I.-M., Tra, T. B., Noêl, Z. G., Claude, K. Z., Ghislaine, F. K. R., & Zézé, A. (2012). Arbuscular mycorrhizal fungi associated with Theobroma cacao L. in the region of Yamoussoukro (Cote d’Ivoire). African Journal of Agricultural Research, 7(6), 993–1001.

    Google Scholar 

  • Sriwati, R., Chamzurni, T., & Sukarman, S. (2011). Deteksi dan identifikasi cendawan endofit Trichoderma yang berasosiasi pada tanaman kakao. Jurnal Agrista, 15, 15–20.

    Google Scholar 

  • Sriwati, R., Melnick, R. L., Muarif, R., Strem, M. D., Samuels, G. J., & Bailey, B. A. (2015). Trichoderma from Aceh Sumatra reduce Phytophthora lesions on pods and cacao seedlings. Biological Control. doi:10.1016/j.biocontrol.2015.04.018.

    Google Scholar 

  • Strickland, A. H. (1951). The entomology of swollen shoot of cacao. II-The bionomics and ecology of the species involved. Bulletin of Entomological Research, 42, 65–103.

    Article  Google Scholar 

  • Suryanto, D., Wahyuni, S., Siregar, E. B. M., & Munir, E. (2014). Utilization of chitinolytic bacterial isolates to control anthracnose of cacao leaf caused by Colletotrichum gloeosporioides. African Journal of Biotechnology, 13, 1631–1637.

    Article  Google Scholar 

  • Talontsi, F. M., Dittrich, B., Schüffler, A., Sun, H., & Laatsch, H. (2013). Epicoccolides: Antimicrobial and antifungal polyketides from an endophytic fungus Epicoccum sp. associated with Theobroma cacao. European Journal of Organic Chemistry, 2013(15), 3174–3180. doi:10.1002/ejoc.201300146.

    Article  CAS  Google Scholar 

  • Tchameni, S. N., Ngonkeu, M. E. L., Begoude, B. A. D., Wakam Nana, L., Fokom, R., Owona, A. D., Mbarga, J. B., Tchana, T., Tondje, P. R., Etoa, F. X., Kuaté J. (2011). Effect of Trichoderma asperellum and arbuscular mycorrhizal fungi on cacao growth and resistance against black pod disease. Crop Protection, 30, 1321–1327.

    Google Scholar 

  • Tchameni, S. N., Nwaga, D., Wakam, L. N., Ngonkeu, E. L. M., Fokom, R., Kuaté, J., Etoa, Francois-Xavier (2012). Growth enhancement, amino acid synthesis and reduction in susceptibility towards Phytophthora megakarya by arbuscular mycorrhizal fungi inoculation in cacao plants. Journal of Phytopathology, 160, 220–228.

    Google Scholar 

  • ten Hoopen, G. M. (2007). Monitoring mycoparasites on the fructoplane of cacao (Theobroma cacao L.). PhD Thesis, Royal Holloway University of London, p. 243.

    Google Scholar 

  • ten Hoopen, G. M., Deberdt, P., Mbenoun, M., & Cilas, C. (2012). Modelling cacao pod growth: Implications for disease control. Annals of Applied Biology, 160, 260–272.

    Article  Google Scholar 

  • ten Hoopen, G. M., George, A., Martínez, A., Stirrup, T., Flood, J., & Krauss, U. (2010a). Compatibility between Clonostachys isolates with a view to mixed inocula for biocontrol. Mycologia, 102, 1204–1215.

    Article  PubMed  Google Scholar 

  • ten Hoopen, G. M., & Krauss, U. (2006). Biology and control of Rosellinia bunodes, Rosellinia necatrix and Rosellinia pepo: A review. Crop Protection, 25, 89–107.

    Article  Google Scholar 

  • ten Hoopen, G. M., Kuate, J., Mbarga, J. B., Atangana, J. B., Tchana, T., Bateman, R., et al. (2010a). Integrated control of Phytophthora megakarya in Cameroon (pp. 1189–1194). Proceedings of the 16th International Cacao Research Conference. ISBN 978-065-959-5.

    Google Scholar 

  • ten Hoopen, G. M., Rees, R., Aisa, P., Stirrup, T., & Krauss, U. (2003). Population dynamics of epiphytic mycoparasites of the genera Clonostachys and Fusarium for the biocontrol of black pod (Phytophthora palmivora) and moniliasis (Moniliophthora roreri) on cacao (Theobroma cacao). Mycological Research, 107, 587–596.

    Article  PubMed  Google Scholar 

  • Thomas, S. E., Crozier, J., Aime, M. A., Evans, H. C., & Holmes, K. A. (2008). Molecular characterization of fungal endophytic morphospecies associated with the indigenous forest tree, Theobroma gileri, in Ecuador. Mycological Research, 112, 852–860.

    Article  PubMed  CAS  Google Scholar 

  • Thurston, J. L. (1998). Tropical plant diseases (2nd ed., p. 200). Minnesota, MN: APS Press.

    Google Scholar 

  • Tondje, P. R., Hebbar, K. P., Samuels, G., Bowers, J. H., Weise, S., Nyemb, E., et al. (2006). Bioassay of Geniculosporium species for Phytophthora megakarya biological control on cacao pod husk pieces. African Journal of Biotechnology, 5, 648–652.

    Google Scholar 

  • Tondje, P. R., Roberts, D. P., Bon, M. C., Widmer, T., Samuels, G. J., Ismaiel, A., Begoude, A. D., Tchana, T., Nyemb-Tshomb, E., Ndoumbe-Nkeng, M., Bateman, R., Fontem, D., Hebbar K. P. (2007). Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon. Biological Control, 43, 202–212.

    Google Scholar 

  • Torres de la Cruz, M., Ortiz García, C. F., Téliz Ortiz, D., Mora Aguilera, A., & Nava Díaz, C. (2013). Efecto del azoxystrobin sobre Moniliophthora roreri, agente causal de la moniliasis del cacao (Theobroma cacao). Fitopatología, 31, 65–69.

    Google Scholar 

  • Tran, H., Ficke, A., Asiimwe, T., Hofte, M., & Raaijmakers, J. M. (2007). Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonisation of tomato plants by Pseudomonas fluorescens. New Phytologist, 175, 731–742.

    Article  PubMed  CAS  Google Scholar 

  • Tran, H., Kruijt, M., & Raaijmakers, J. M. (2008). Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam. Journal of Applied Microbiology, 3, 839–851.

    Article  CAS  Google Scholar 

  • Urdaneta, L. M., & Delgado, A. E. (2007). Identificación de la micobiota del filoplano del cacaotero (Theobroma cacao L.) en el municipio Carraciolo Parra Olmedo, estado Mérida, Venezuela. Revista de la Facultad de Agronomía, 24, 47–68.

    Google Scholar 

  • Van der Putten, W. H., Vet, L. E. M., Harvey, J. A., & Wäckers, F. L. (2001). Linking above and below ground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends in Ecology and Evolution, 16, 547–554.

    Article  Google Scholar 

  • Van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.

    Article  PubMed  Google Scholar 

  • Van Wees, S. C., van der Ent, S., & Pieterse, C. M. J. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11, 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Wamberg, C., Christensen, S., Jakobsen, I., Muller, A. K., & Sorensen, S. J. (2003). The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biology & Biochemistry, 35, 1349–1357.

    Article  CAS  Google Scholar 

  • Wardle, D. A., Yeates, G. W., Watson, R. N., & Nicholson, K. S. (1995, May). The detritus food-web and the diversity of soil fauna as indicators of disturbance regimes in agro-ecosystems (Vol. 170, pp. 35–43). International Symposium on Soil Biodiversity, East Lansing, MI.

    Google Scholar 

  • Widmer, T. L. (2014). Screening Trichoderma species for biological control activity against Phytophthora ramorum in soil. Biological Control, 79, 43–48.

    Article  Google Scholar 

  • Widmer, T. L., & Laurent, N. (2006). Plant extracts containing caffeic acid and rosmarinic acid inhibit zoospore germination of Phytophthora spp. pathogenic to Theobroma cacao. European Journal of Plant Pathology, 115, 377–388.

    Article  CAS  Google Scholar 

  • Yánez‐Mendizábal, V., Vinas, I., Usall, J., Torres, R., Solsona, C., Abadias, M., Teixidó (2012). Formulation development of the biocontrol agent Bacillus subtilis strain CPA‐8 by spray‐drying. Journal of Applied Microbiology, 112, 954–965.

    Google Scholar 

  • Yedidia, I., Benhamou, N., Kapulnik, Y., & Chet, I. (2000). Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiology and Biochemistry, 38, 863–873.

    Article  CAS  Google Scholar 

  • Yedidia, I., Benhamou, N., & Chet, I. (1999). Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology, 65, 1061–1070.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang, Y., Smith, P., Maximova, S. N., & Guiltinan, M. J. (2014). Application of glycerol as a foliar spray activates the defence response and enhances disease resistance of Theobroma cacao. Molecular Plant Ecology, 16, 27–37. doi:10.1111/mpp. 12158.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. ten Hoopen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

ten Hoopen, G.M., Krauss, U. (2016). Biological Control of Cacao Diseases. In: Bailey, B., Meinhardt, L. (eds) Cacao Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-24789-2_17

Download citation

Publish with us

Policies and ethics