Advertisement

Cacao Diseases pp 483-499 | Cite as

Cherelle Wilt of Cacao: A Physiological Condition

  • Rachel L. MelnickEmail author
Chapter

Abstract

Cacao beans are produced in pods (fruits) of the trees of Theobroma cacao L. Cacao pods are produced after pollination of the small cauliflorous flowers covering the branches and trunk of the tree. Despite abundant flowering, only 0.5–5 % of cacao flowers become pollinated. Pollinated flowers then develop into immature pods, commonly known as cherelles. Despite abundant flowers and pod set of trees, few cherelles develop into mature pods. Up to 75 % of cherelles are lost to a thinning condition known as cherelle wilt. Additionally, cherelles can be lost at an early stage to insect, stramenopile, and fungal pests. This chapter will discuss the physiological changes in young fruit that cause cherelle wilt, as well as the physiological changes induced in pods caused by cherelle wilt. Lastly, the chapter will discuss whether there is a clear link between cherelle wilt and frosty pod rot caused by Moniliophthora roreri.

Keywords

Biological Control Agent Cacao Tree Flower Abscission Cacao Bean Minor Pathogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work was funded by USDA ARS. References to a company and/or product by the USDA are only for the purposes of information and do not imply approval or recommendation of the product to the exclusion of others that may also be suitable. USDA is an equal opportunity provider and employer.

References

  1. Aime, M. C., & Phillips-Mora, W. (2005). The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia, 97(5), 1012–1022.CrossRefPubMedGoogle Scholar
  2. Alvim, P. T. (1954). Studies on the cause of cherelle wilt of cacao. In Fourth Meeting of the Inter-American Technical Cacao Committee, Guayaquil, Ecuador (Vol. 19, p. 10). Communications of Turrialba.Google Scholar
  3. Aneja, M., Gianfagna, T., & Ng, E. (1999). The roles of abscisic acid and ethylene in the abscission and senescence of cocoa flowers. Plant Growth Regulators, 27, 149–155.CrossRefGoogle Scholar
  4. Argout, X., Salse, J., Aury, J., Guiltinan, M., Droc, G., Gouzy, J., et al. (2010). The Genome of Theobroma cacao. Nature Genetics,  43, 101–108.Google Scholar
  5. Ashiru, G. A. (1971). Potential pod production and pod loss in cacao (Theobroma cacao L.). Journal of Horticultural Science, 46, 95–102.Google Scholar
  6. Asomaning, E. J. A., Kwakwa, R. S., & Hutcheon, W. V. (1971). Physiological studies on an Amazon shade and fertilizer trial at the Cocoa Research Institute, Ghana. Ghana Journal of Agricultural Science, 4, 47–64.Google Scholar
  7. Baker, R. P., Hasenstein, K. H., & Zavada, M. S. (1997). Hormonal changes after compatible and incompatible pollination in Theobroma cacao L. HortScience, 32(7), 1231–1234.Google Scholar
  8. Bos, M. M., Steffan-Dewenter, I., & Tscharntke, T. (2007). Shade tree management affects fruit abortion, insect pests and pathogens of cacao. Agriculture, Ecosystems and Environment, 120(2–4), 201–205.CrossRefGoogle Scholar
  9. Brooks, E. R., & Guard, A. T. (1952). Vegetative anatomy of Theobroma cacao. Botanical Gazette, 113(4), 444–454.CrossRefGoogle Scholar
  10. Buchanan-Wollaston, V. (1997). The molecular biology of leaf senescence. Journal of Experimental Botany, 48(2), 181–199.CrossRefGoogle Scholar
  11. Cope, F. W. (1962). The mechanism of pollen incompatibility in Theobroma cacao L. Heredity, 17, 157–182.CrossRefGoogle Scholar
  12. de la Cruz, M. T., Garcia, C. F. O., Ortiz, D. T., Aguilera, A. M., & Diaz, C. N. (2011). Temporal progress and integrated management of frosty pod rot (Moniliophthora roreri) of cacao in Tabasco, Mexico. Journal of Plant Pathology, 93(1), 31–36.Google Scholar
  13. Deberdt, P., Mfegue, C. V., Tondje, P. R., Bon, M. C., Ducamp, M., Hurard, C., et al. (2008). Impact of environmental factors, chemical fungicide and biological control on cacao pod production dynamics and black pod disease (Phytophthora megakarya) in Cameroon. Biological Control, 44(2), 149–159.CrossRefGoogle Scholar
  14. Falque, M., Lesdalons, C., & Eskes, A. B. (1996). Comparison of two clones (Theobroma cacao L.) clones for the effect of pollination intensity on fruit set and seed content. Sexual Plant Reproduction, 9(4), 221–227.CrossRefGoogle Scholar
  15. Hasenstein, K. H., & Zavada, M. S. (2001). Auxin modification of the incompatibility response in Theobroma cacao. Physiologia Plantarum, 112(1), 113–118.CrossRefPubMedGoogle Scholar
  16. Humphries, E. C. (1943). Wilt of cacao fruits (Theobroma Cacao): I. An investigation into the causes. Annals of Botany, 7(1), 31–44.Google Scholar
  17. Humphries, E. C. (1944). Wilt of cacao fruits (Theobroma Cacao): III. Changes in mineral content during development. Annals of Botany, 8(1), 57–70.Google Scholar
  18. Idris, E. E., Iglesias, D. J., Talon, M., & Borriss, R. (2007). Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions, 20(6), 619–626.CrossRefPubMedGoogle Scholar
  19. Kilaru, A., Bailey, B. A., & Hasenstein, K. H. (2007). Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiology Letters, 274(2), 238–244.CrossRefPubMedGoogle Scholar
  20. Krauss, U., Hidalgo, E., Bateman, R., Adonijah, V., Arroyo, C., García, J., et al. (2010). Improving the formulation and timing of application of endophytic biocontrol and chemical agents against frosty pod rot (Moniliophthora roreri) in cocoa (Theobroma cacao). Biological Control, 54(3), 230–240.CrossRefGoogle Scholar
  21. Krauss, U., & Soberanis, W. (2001). Rehabilitation of diseased cacao fields in Peru through shade regulation and timing of biocontrol measures. Agroforestry Systems, 53, 179–184.CrossRefGoogle Scholar
  22. Lanaud, C., Sounigo, O., Amefia, Y. K., Paulin, D., Lachenaud, P., & Clement, D. (1987). New data on the mechanisms of incompatibility in cocoa and its consequences on breeding. The Cafe Cacao, 31, 267–282.Google Scholar
  23. Leach, A. W., Mumford, J. D., & Krauss, U. (2002). Modelling Moniliophthora roreri in Costa Rica. Crop Protection, 21(4), 317–326.CrossRefGoogle Scholar
  24. McKelvie, A. D. (1956). Cherelle wilt of cacao: I. Pod development and its relation to wilt. Journal of Experimental Botany, 7(20), 252–263.CrossRefGoogle Scholar
  25. Melnick, R., Bailey, B., & Backman, P. (2013a). Bacterial endophytes of perennial crops for management of plant disease. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Disease management (pp. 49–76). Berlin: Springer.CrossRefGoogle Scholar
  26. Melnick, R. L., Marelli, J.-P., Sicher, R. C., Strem, M. D., & Bailey, B. A. (2012). The interaction of Theobroma cacao and Moniliophthora perniciosa, the causal agent of witches’ broom disease, during parthenocarpy. Tree Genetics and Genomes, 8(6), 1261–1279.CrossRefGoogle Scholar
  27. Melnick, R. L., Strem, M. D., Crozier, J., Sicher, R. C., & Bailey, B. A. (2013b). Molecular and metabolic changes of cherelle wilt of cacao and its effect on Moniliophthora roreri. Physiological and Molecular Plant Pathology, 84, 153–162.CrossRefGoogle Scholar
  28. Naundorf, G., & Vellamil, F. (1949). Caída prematura y marchitamiento de los frutos jóvenes y posibles sistemas para evitarlo. Nota Agronomicas, 2, 89–93.Google Scholar
  29. Nichols, R. (1961). Xylem occlusions in the fruit of cacao (Theobroma cacao) and their relation to cherelle wilt. Annals of Botany, 25(100), 465–475.Google Scholar
  30. Nichols, R. (1964). Studies of fruit development of cacao (Theobroma cacao) in relation to cherelle wilt: I. Development of pericarp. Annals of Botany, 28(112), 619–635.Google Scholar
  31. Nichols, R. (1965). Studies of development of cacao (Theobroma cacao) in relation to cherelle wilt: III. Effects of fruit-thinning. Annals of Botany, 29(114), 197–203.Google Scholar
  32. Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125.CrossRefPubMedGoogle Scholar
  33. Orchard, J. E., Resnik, M. E., &Mendes, L. F. (1981).The effect of gibberellic acid and various auxins on Ethrel induced wilt of cacao. In Proceedings 8th International Cocoa Research Conference, Cartagena.Google Scholar
  34. Peter, P. A., & Chandramohanan, R. (2011). Occurrence and distribution of cocoa (Theobroma cacao L.) diseases in India. Journal of Research for ANGRAU, 39, 44–50.Google Scholar
  35. Porras, V. H., & Gonzalez, U. (1984). Liberation of Monilia roreri from diseased cacao fruits left on the tree. Fitopatologia, 19, 8–12.Google Scholar
  36. Sale, P. J. M. (1970). Growth and flowering of cacao under controlled atmospheric relative humidities. Journal of Horticultural Science, 45, 119–132.Google Scholar
  37. Santoso, D., & Purwanto, R. (2013). Chlorocholine chloride induces cacao reproductive development leading to improved fruitlets productivity of cacao trees in the field. Journal of Agricultural Science and Technology B, 3, 517–524.Google Scholar
  38. Schmülling, T., Werner, T., Riefler, M., Krupková, E., & Bartrina y Manns, I. (2003). Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis, and other species. Journal of Plant Research, 116(3), 241–252.CrossRefPubMedGoogle Scholar
  39. Sturm, A. (1999). Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiology, 121(1), 1–8.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Suarez-Capello, C. (1977). Growth of Crinipellis pemiciosa (Stahel) Singer in vivo and in vitro. Ph.D. Thesis, Imperial College, London.Google Scholar
  41. Thrower, L. B. (1960). Observations on the diseases of cacao pods in Papua New Guinea: II. Cherelle wilt. Tropical Agriculture, 37, 121–124.Google Scholar
  42. Uthaiah, B. C., & Sulladmath, U. V. (1981). Effect of growth-regulators on cherelle wilt in cacao Theobroma cacao L. The Journal of Plantation Crops, 9, 46–50.Google Scholar
  43. Uthaiah, B. C., & Sullabmath, U. V. (1980). Cytokinin-like substances and cherelle wilt in cacao (Theobroma cacao L.). Journal of Plantation Crops, 8, 78–81.Google Scholar
  44. Valle, R. R., De Almeida, A.-A. F., & Leite, R. M. O. (1990). Energy costs of flowering, fruiting, and cherelle wilt in cacao. Tree Physiology, 6(3), 329–336.CrossRefPubMedGoogle Scholar
  45. Wood, G., & Lass, R. (2001). Cocoa. Oxford: Blackwell Science Ltd.CrossRefGoogle Scholar
  46. Yede, Babin, R., Djieto-Lordon, C., Cilas, C., Dibog, L., Mahob, R., et al. (2012). True bug (Heteroptera) impact on cocoa fruit mortality and productivity. Journal of Economic Entomology, 105(4), 1285–1292.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Division of Global Climate ChangeInstitute of Bioenergy, Climate and Environment, USDA National Institute of Food and AgricultureWashington, DCUSA

Personalised recommendations