Cacao Diseases pp 449-480 | Cite as

Root-Infecting Fungi Attacking Theobroma cacao

  • Julie FloodEmail author
  • G. M. ten Hoopen
  • Ulrike Krauss
  • Andrews Akrofi


In this chapter, we consider some of the “root-infecting” pathogens of Theobroma cacao. Despite sometimes being described as minor pathogens of the crop, they can cause serious losses locally. We have chosen to examine four pathogens—Verticillium dahliae (Verticillium wilt or sudden death), Rigidoporus microporus (white root disease), Rosellinia spp. (black rot), and Phellinus noxious (brown root rot). These are all soil-borne, root-infecting fungi, but whilst the basidiomycetes and Rosellinia (ascomycete) are unspecialized, opportunistic root rot pathogens whose pathogenicity is part of a saprophytic lifestyle, Verticillium is a highly specialized pathogen adapted for colonization of the xylem system. Yet, despite differences in their pathogenicity, there are some important practical similarities with regard to their management. These pathogens are extremely difficult to manage given their soil-borne nature, colonization of alternative hosts and/or colonization of woody debris, and the perennial nature of the cacao host plant. Currently, cultural methods are often used as the main management approaches with chemical control being considered too costly or ineffective. Development of breeding programs against the unspecialized pathogens is one area of research that should be expanded; successful breeding programs have been undertaken for Verticillium in Brazil. Biological control is another area where further work is needed for all these pathogens both with regard to the direct application of biological control agents (BCAs) themselves and on the interaction with BCAs and various soil amendments to enhance naturally occurring antagonists. There may be differences in approach here based on modes of pathogenicity, but inevitably, we should be aiming at an integrated approach for these pathogens.


Coarse Woody Debris Verticillium Wilt Infected Tree Cacao Tree Generative Hypha 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Verticillium dahliae: Verticillium Wilt

  1. Almeida, O. C., Almeida, L. C. C., & Figueiredo, J. M. (1989). Obtenção, em meio de cultura, de propágulos de Verticillium dahliae Kleb., causador da murcha de Verticillium em cacaueiro. Agrotropica, 1, 213–215.Google Scholar
  2. Ashworth, L. J., Jr. (1983). Aggressiveness of random and selected isolates of Verticillium dahliae from cotton and the quantitative relationship of internal inoculum to defoliation. Phytopathology, 73, 1292–1295.CrossRefGoogle Scholar
  3. Ashworth, L. J., Jr., & Gaona, S. A. (1982). Evaluation of clear polyethylene mulch for controlling Verticillium wilt in established pistachio nut groves. Phytopathology, 72(2), 243–246.CrossRefGoogle Scholar
  4. Berg, G., & Ballin, G. (1994). Bacterial antagonists to Verticillium dahliae Kleb. Journal of Phytopathology, 141(1), 99–110.CrossRefGoogle Scholar
  5. Bowers, J. H., Nameth, S. T., Riedel, R. M., & Rowe, R. C. (1996). Infection and colonization of potato roots by Verticillium dahliae as affected by Pratylenchus penetrans and P. crenatus. Phytopathology, 86(6), 614–621.CrossRefGoogle Scholar
  6. Butterfield, E. J., DeVay, J. E., & Garber, R. H. (1978). The influence of several crop sequences on the incidence of Verticillium wilt of cotton and on the population of Verticillium dahliae in field soil. Phytopathology, 68(8), 1217–1220.CrossRefGoogle Scholar
  7. CPC. (2015). Crop Protection Compendium. Wallingford: CAB International. Scholar
  8. Cavalcanti, L. S., & Resende, M. L. V. (2005). Effect of time and dosage of acibenzolar-S-methyl applications in inducing resistance to Verticillium wilt in seedlings. Fitopatologia Brasileira, 30, 67–71. doi: 10.1590/S0100-41582005000100011. ISSN 0100-4158.CrossRefGoogle Scholar
  9. Cooper, R. M., Resende, M., Flood, J., Rowan, M. G., Beale, M. H., & Potter, U. (1996). Detection and cellular localization of elemental sulphur in disease-resistant genotypes of Theobroma cacao. Nature, 379, 159–162.CrossRefGoogle Scholar
  10. Cooper, R. M., Resende, M., Flood, J., & Mepted, R. (2000). Physiology and biochemistry of compatible and incompatible responses of Theobroma cacao to Verticillium dahlia. In E. C. Tjamos, R. C. Rowe, J. B. Heale, & D. R. Fravel (Eds.), Advances in Verticillium research and disease management (pp. 160–165). St. Paul: APS Press.Google Scholar
  11. Domsch, K. H., Gams, W., & Anderson, T. (2007). Compendium of soil fungi (2nd ed., 672 pp). Eching: IHW Verlag.Google Scholar
  12. Emechebe, A. M., Leakey, C. L. A., & Banage, W. B. (1971). Verticillium wilt of cacao in Uganda: Symptoms and establishment of pathogenicity. Annals of Applied Biology, 69, 223–227.CrossRefGoogle Scholar
  13. Evans, G. (1971). Influence of weed hosts on the ecology of Verticillium dahliae in newly cultivated areas of the Namoi Valley, New South Wales. Annals of Applied Biology, 67, 169–175.CrossRefGoogle Scholar
  14. Fradin, E. F., & Thomma, B. P. H. J. (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 7, 71–86.PubMedCrossRefGoogle Scholar
  15. Fravel, D. R., Lewis, J. A., & Chittams, J. L. (1995). Alginate prill formulations of Talaromyces flavus with organic carriers for biocontrol of Verticillium dahliae. Phytopathology, 85(2), 165–168.CrossRefGoogle Scholar
  16. Freitas, V. M., & Mendes, M. A. S. (2005). Espécies de fungos exóticos para a cultura do cacau. Comunicado Técnico No. 124. EMBRAPA, Brasília.Google Scholar
  17. Granada, G. G. (1989). Marchitez del cacao por Verticillium dahliae. Cacaotero Colombiano, 12, 17–28.Google Scholar
  18. Gómez-Alpízar, L. (2001). Verticillium dahliae. PP-728 Pathogen Profiles. NC State University. Available from
  19. Green, R. J., Jr. (1980). Soil factors affecting survival of microsclerotia of Verticillium dahliae. Phytopathology, 70, 353–355.CrossRefGoogle Scholar
  20. Heale, J. B. (2000). Diversification and speciation in Verticillium - an overview. In: Advances in Verticillium Research and Disease Management (Eds. E. C. Tjamos, R. C. Rowe, J. B, Heale and D. R. Fravel,.St. Paul, USA: APS Press, 1-14.Google Scholar
  21. Huisman, O. C. (1982). Interrelations of root growth dynamics to epidemiology of root-invading fungi. Annual Review of Phytopathology, 20, 303–327.CrossRefGoogle Scholar
  22. Huisman, O. C., & Ashworth, L. J., Jr. (1976). Influence of crop rotation on survival of Verticillium albo-atrum in soils. Phytopathology, 66(8), 978–981.CrossRefGoogle Scholar
  23. Jiménez-Díaz, R. M., Cirulli, M., Bubici, G., Jiménez-Gasco, M. D., Antoniou, P. P., & Tjamos, E. C. (2012). Verticillium wilt, a major threat to olive production: Current status and future prospects for its management. Plant Disease, 96, 304–329.CrossRefGoogle Scholar
  24. Klosterman, S. J., Atallah, Z. K., Vallad, G. E., & Subbarao, K. V. (2009). Diversity, pathogenicity, and management of Verticillium species. Annual Review of Phytopathology, 47, 39–62. doi: 10.1146/annurev-phyto-080508-081748.PubMedCrossRefGoogle Scholar
  25. Leakey, C. L. A. (1965). Sudden death disease of cocoa in Uganda associated with Verticillium dahliae Kleb. East African Agriculture and Forestry Journal, 31, 21–24.Google Scholar
  26. Lazarovits, G., Conn, K. L., & Tenuta, M. (2000). Control of Verticillium dahliae with soil amendments: Efficacy and mode of action. In E. C. Tjamos, R. C. Rowe, J. B. Heale, & D. R. Fravel (Eds.), Advances in Verticillium research and disease management (pp. 274–291). St. Paul: APS Press.Google Scholar
  27. Ma, P., & Shezeng, L. (2000). Incidence and damage of Verticillium wilt of cotton in China. In E. C. Tjamos, R. C. Rowe, J. B. Heale, & D. R. Fravel (Eds.), Advances in Verticillium research and disease management (pp. 353–357). St. Paul: APS Press.Google Scholar
  28. Mace, M. E., Bell, A. A., & Beckman, C. H. (1981). Fungal wilt diseases of plants (640 pp). London: Academic Press Inc.Google Scholar
  29. Madi, L., Katan, T., Katan, J., & Heni, Y. (1997). Biological control of Sclerotium rolfsii and Verticillium dahliae by Talaromyces flavus is mediated by different mechanisms. Phytopathology, 87, 1054–1060.PubMedCrossRefGoogle Scholar
  30. Matovu, S. (1973). A survey of cocoa diseases in Uganda. East African Agricultural and Forestry Journal, 38(3), 218–228.Google Scholar
  31. Mol, L. (1995). Effect of plant roots on the germination of microsclerotia of Verticillium dahliae. II. Quantitative analysis of the luring effect of crops. European Journal of Plant Pathology, 101(6), 679–685.CrossRefGoogle Scholar
  32. Mol, L., Scholte, K., & Vos, J. (1995). Effects of crop rotation and removal of crop debris on the soil population of two isolates of Verticillium dahliae. Plant Pathology, 44, 1070–1074.CrossRefGoogle Scholar
  33. Mueller, W. C., & Morgham, A. T. (1993). Ultrastructure of the vascular responses of cotton to Verticillium dahliae. Canadian Journal of Botany, 71, 32–36.CrossRefGoogle Scholar
  34. Nabwiiso, S. (2015, March 29). Uganda to revamp cocoa farming. East African Business Week.Google Scholar
  35. Narisawa, K., Ohki, K. T., & Hashiba, T. (2000). Suppression of clubroot and Verticillium yellows in Chinese cabbage in the field by the root endophytic fungus, Heteroconium chaetospira. Plant Pathology, 49(1), 141–146.CrossRefGoogle Scholar
  36. Pereira, R. B., Resende, M. L. V., Ribeiro, P. M., Amaral, D. R., Lucas, G. C., & Cavalcanti, F. R. (2008). Ativação de defesa em cacaueiro contra a murcha-de-verticílio por extratos naturais e acibenzolar-S-metil. Pesquisa Agropecuária Brasileira, 43, 171–178.Google Scholar
  37. Resende, M. L. V. (1994). Vascular wilt of cocoa (Theobroma cacao L.), caused by Verticillium dahliae Kleb.: Studies on pathogenicity and resistance (Ph.D. thesis). University of Bath, Bath.Google Scholar
  38. Resende, M. L. V., Flood, J., & Cooper, R. M. (1994). Host specialization of Verticillium dahliae, with emphasis on isolates from cocoa (Theobroma cacao). Plant Pathology, 43, 104–111.CrossRefGoogle Scholar
  39. Resende, M. L. V., Flood, J., & Cooper, R. M. (1995). Effect of method of inoculation, inoculum density and seedling age at inoculation on the expression of resistance of cocoa (Theobroma cacao L.) to Verticillium dahlia Kleb. Plant Pathology, 44, 374–383.CrossRefGoogle Scholar
  40. Resende, M. L. V., Mepsted, R., Flood, J., & Cooper, R. M. (1996a). Water relations and ethylene production as related to symptom expression in cocoa seedlings infected with defoliating and non-defoliating isolates of Verticillium dahliae. Plant Pathology, 45, 964–972.CrossRefGoogle Scholar
  41. Resende, M., Flood, J., Ramsden, J., Rowan, M., Beale, M., & Cooper, R. M. (1996b). Novel phytoalexins including elemental sulphur in the resistance of cocoa (Theobroma cacao L.) to Verticillium wilt (Verticillium dahliae). Physiological and Molecular Plant Pathology, 48, 347–359.CrossRefGoogle Scholar
  42. Resende, M. L. V., de Paiva Custódio, A. A., & Fernanda Carvalho Lopes de Medeiros. (2010). Verticillium wilt of cacao. In: M. J. End, A. J. Daymond, & P. Hadley (Eds.), Technical guidelines for the safe movement of cacao germplasm. Revised from FAO/IPGRI Technical Guidelines No 20 (pp. 34–41). Montpellier: Global Cacao Genetic Resources Network (CacaoNet), Bioversity International. ISBN 978-92-9043-871-7.Google Scholar
  43. Sackston, W. E. (1983). Epidemiology and control of seed-borne Verticillium spp. causing vascular wilt. Seed Science and Technology, 11, 731–747.Google Scholar
  44. Schnathorst, W. C., & Mathre, D. E. (1966). Host range and differentiation of a severe form of Verticillium albo-atrum in cotton. Phytopathology, 56, 1155–1161.Google Scholar
  45. Schnathorst, W. C. (1981). Life cycle and epidemiology of Verticillium. In M. E. Mace, A. A. Bell, & C. H. Beckman (Eds.), Fungal wilt diseases of plants (pp. 113–144). New York: Academic Press.Google Scholar
  46. Sekamate, M. B., & Okwakol, M. J. N. (2007). The present knowledge on soil pests and pathogens in Uganda. African Journal of Ecology, 45, 9–19.CrossRefGoogle Scholar
  47. Stapleton, J. J., Paplomatas, E. J., Wakeman, R. J., & DeVay, J. E. (1993). Establishment of apricot and almond trees using soil mulching with transparent (solarization) and black polyethylene film: Effects on Verticillium wilt and tree health. Plant Pathology, 42(3), 333–338.CrossRefGoogle Scholar
  48. Subbarao, K. V., Chassot, A., Gordon, T. R., Hubbard, J. C., Bonello, P., Mullin, R., et al. (1995). Genetic relationships and cross pathogenicities of Verticillium dahliae isolates from cauliflower and other crops. Phytopathology, 85, 1105–1112.CrossRefGoogle Scholar
  49. Talboys, P. W. (1968). Water deficits in vascular diseases. In T. T. Kozlowski (Ed.), Plant water consumption and response (Vol. 2, pp. 255–311). New York: Academic Press.Google Scholar
  50. Typas, M. S. (2000). Molecular characterization of Verticillium species. In E. C. Tjamos, R. C. Rowe, J. B. Heale, & D. R. Fravel (Eds.), Advances in Verticillium research and disease management (pp. 32–40). St. Paul: APS Press.Google Scholar
  51. Tjamos, E. C., Biris, D. A., & Paplomatas, E. J. (1991). Recovery of olive trees with Verticillium wilt after individual application of soil solarization in established olive orchards. Plant Disease, 75(6), 557–562.CrossRefGoogle Scholar
  52. Tjamos, E. C. (2000). Strategies in developing methods and applying techniques for the biological control of Verticillium dahliae – Short review. In E. C. Tjamos, R. C. Rowe, J. B. Heale, & D. R. Fravel (Eds.), Advances in Verticillium research and disease management (pp. 227–231). St. Paul: APS Press.Google Scholar
  53. Tzeng, D. D., & DeVay, J. E. (1985). Physiological responses of Gossypium hirsutum L. to infection by defoliating and non-defoliating pathotypes of Verticillium dahliae Kleb. Physiological Plant Pathology, 26, 57–72.CrossRefGoogle Scholar
  54. Xiao, C. L., & Subbarao, K. V. (1998). Relationships between Verticillium dahliae inoculum density and wilt incidence, severity, and growth of cauliflower. Phytopathology, 88, 1108–1115.PubMedCrossRefGoogle Scholar
  55. Xiao, C. L., Subbarao, K. V., Schulbach, K. F., & Koike, S. T. (1998). Effects of crop rotation and irrigation on Verticillium dahliae microsclerotia in soil and wilt in cauliflower. Phytopathology, 88(10), 1046–1055.PubMedCrossRefGoogle Scholar

Rosellinia: Black Rot Disease

  1. Achicanoy, H. (1989, July 10–14). Sensibilidad de Rosellinia pepo Pat. causante de la llaga estrellada del cacao (Theobroma cacao L.) a funguicidas in vitro. In Program and Abstracts of the Congress of the Asociación Latinoamericana de Fitopatólogos, APS-Caribbean División and the Asociación Colombiana de Fitopatólogos y Ciencias Afines, CIAT, Cali (p. 38).Google Scholar
  2. Aranzazu, H. F. (1996). Comportamiento de la llaga estrellada Rosellinia pepo Pat. sobre raices de cacao. Fitopatología Colombiana, 20, 7–10.Google Scholar
  3. Aranzazu, H. F. (1997). Control de la llaga estrellada en cacao causada por Rosellinia pepo Pat. Fitopatalogia Colombiana, 21, 5–9.Google Scholar
  4. Aranzazu, H. F., Cárdenas, L. J., Mujica, J. J., & Gómez, Q. R. (1999). Manejo de las llagas radicales (Rosellinia sp.). Boletin de Sanidad Vegetal, 23, 35. Santafé de Bogotá: Instituto Colombiano Agropecuario (ICA) and Corpoica.Google Scholar
  5. Bautista, P. F., & Rivera, M. A. A. (1997, September 16–19). Evaluación de agroquímicos para combatir ataques de (Rosellinia sp.) en el cultivo del café. In J. Echeverri, O. Mora, & L. Zamora (Eds.), Memorias. 18. Simposio Latino-Americano de Caficultura (pp. 339–343). San José: IICA, Promecafé, Instituto de Café de Costa Rica.Google Scholar
  6. Booth, C., & Holliday, P. (1972). Rosellinia pepo. Descriptions of pathogenic fungi and bacteria (Vol. 354). Kew: Commonwealth Mycological Institute.Google Scholar
  7. Cadavid, S. (1995). Rosellinia in cocoa. Cocoa Growers’ Bulletin, 49, 52–59.Google Scholar
  8. Castro, B. L., Carreño, A. J., Galeano, N. F., Roux, J., Wingfield, M. J., & Gaitán, A. L. (2013). Identification and genetic diversity of Rosellinia spp. associated with root rot of coffee in Colombia. Australasian Plant Pathology, 42, 515–523.CrossRefGoogle Scholar
  9. Cubillos, G. (1988). Eficiencia de campo del fungicida sistémico tridemorph en el control de la Rosellinia del cacao. El Cacaotero Colombiano, 11, 27–33.Google Scholar
  10. Feitosa, M. J., & Pimentel, C. P. V. (1991). Rosellinia bunodes (Berk. et Br.) Sacc., fungo patogênico a cacaueiros (Theobroma cacao L.) no estado de São Paulo. Científica, 19, 31–35.Google Scholar
  11. García, J., George, A., Argyle, T., ten Hoopen, G. M., & Krauss, U. (2005). Existe la tolerancia genética del cacao (Theobroma cacao) a Rosellinia bunodes y Rosellinia pepo? Manejo Integrado de Plagas, 75, 21–31.Google Scholar
  12. Herrera, I. L., & Grillo, R. H. (1989). La pudrición negra de las raíces del cafeto en la región del Escambray. Revista Centro Agrícola (Cuba), 16, 53–59.Google Scholar
  13. López, D. S., & Fernández, B. O. (1966). Llagas radicales negra (Rosellinia bunodes) y estrellada (Rosellinia pepo) del cafeto. II. Effecto de la humedad y pH del suelo en el desarrollo micelial e infección. Cenicafé (Colombia), 17, 61–69.Google Scholar
  14. Mendoza, R. A. (2000). Aislamiento selectivo y pretamizado en bioensayos de micoparasitos contra Rosellinia spp. (M.Sc. thesis). Catie, Costa Rica.Google Scholar
  15. Mendoza, R. A., ten Hoopen, G. M., Kass, D. C. J., Sánchez, V. A., & Krauss, U. (2003). Evaluation of mycoparasites as biocontrol agents of Rosellinia root rot in cocoa. Biological Control, 27, 210–227.CrossRefGoogle Scholar
  16. Merchán, V. M. (1989a). Manejo de enfermedades en cacao. Ascolfi Informa, 15, 10–14.Google Scholar
  17. Merchán, V. M. (1989b, July 10–14). Evaluació funguicidas para el control de la llaga estrellada (Rosellinia pepo) del cacao. In Program and Abstracts of the Congress of the Asociación Latinoamericana de Fitopatologos, APS-Caribbean División and the Asociación Colombiana de Fitopatólogos y Ciencias Afines, CIAT, Cali (p. 44).Google Scholar
  18. Merchán, V. M. (1990). La Rosellinia del cacao. El Cacaotero Colombiano, 13, 13–19.Google Scholar
  19. Merchán, V. M. (1993). Experiencias en el manejo de Rosellinia. Ascolfi Informa, 19, 23–24.Google Scholar
  20. Nowell, W. (1916). Rosellinia root diseases in the Lesser Antilles. West Indian Bulletin, 16, 31–77.Google Scholar
  21. Petrini, L. E. (1993). Rosellinia species of the temperate zones. Sydowia, 44, 169–281.Google Scholar
  22. Ruiz, L., & Leguizamón, J. (1996). Efecto del contenido de materia orgánica del suelo sobre el control de Rosellinia bunodes con Trichoderma spp. Cenicafé, 47, 179–186.Google Scholar
  23. Saccas, A. M. (1956). Les Rosellinia des caféiers en Oubangui-Chari (Parts 1 and 2). L’Agronomie Tropicale, 11(551–595), 687–706.Google Scholar
  24. Sivanesan, A., & Holliday, P. (1972). Rosellinia bunodes. Descriptions of pathogenic fungi and bacteria (Vol. 351). Kew: Commonwealth Mycological Institute.Google Scholar
  25. Stell, F. (1929). Annual Report for the Department of Agriculture Trinidad and Tobago for the Year 1927, Port of Spain (pp. 33).Google Scholar
  26. Stockdale, F. A. (1908). Fungus diseases of cacao and sanitation of cacao orchards. West Indian Bulletin, 9, 166–170.Google Scholar
  27. Sztejnberg, A., Azaizia, H., & Chet, I. (1983). The possible role of phenolic compounds in resistance of horticultural crops to Dematophora necatrix Hartig. Journal of Phytopathology, 107(4), 318–326.CrossRefGoogle Scholar
  28. Sztejnberg, A., & Jabareen, H. (1985). Dematophora root rot disease in persimmon and studies on resistance of rootstocks to the disease. Alon Hanotea, 39, 757–762.Google Scholar
  29. Sztejnberg, A., & Jabareen, H. (1986). Studies of resistance of persimmon rootstocks to Dematophora root rot. Phytoparasitica, 14, 240.Google Scholar
  30. Sztejnberg, A., Freeman, S., Chet, I., & Katan, J. (1987). Control of Rosellinia necatrix in soil and in apple orchards by solarization and Trichoderma harzianum. Plant Disease, 71, 365–369.CrossRefGoogle Scholar
  31. ten Hoopen, G. M., & Krauss, U. (2006). Biology and control of Rosellinia bunodes, Rosellinia necatrix and Rosellinia pepo: A review. Crop Protection, 25, 89–107.CrossRefGoogle Scholar
  32. Waterston, J. M. (1941). Observations on the parasitism of Rosellinia pepo Pat. Tropical Agriculture, 18, 174–184.Google Scholar

Rigidoporus microporus: White Root Disease

  1. Allen, P. W., & Cronin, M. E. (1994). Analysis of the 1993/1994 IRRDB survey on severity of diseases of Hevea. In IRRDB Symposium on Diseases of Hevea, Cochin.Google Scholar
  2. Azmi, C. A. (2005). Development of technique to screen cocoa for resistance against the white root disease caused by Rigidoporus lignosus (Klot.) Bres. Thesis of Master of Science, University Putra Malaysia, Serdang (119 pp).Google Scholar
  3. Azmi, C. A. (2006). Selection of cocoa resistant to white root disease by screening open pollinated seedlings. Malaysian Cocoa Journal, 2, 53–55.Google Scholar
  4. Canh, T. V. (1986). Use of Calixin and Sandofan against white root disease and black stripe of Hevea brasiliensis. In Proceedings of International Rubber Conference, Kuala Lumpur (pp. 222–236).Google Scholar
  5. Fernando, T. H. P. S., Jayasinghe, C. K., Wijesundera, R. L. C., & Siriwardene, D. (2012). Development of an early detection method for white root disease caused by Rigidoporus microporus. In Proceedings of International Forestry and Environment Symposium, Sri Lanka. Department of Forestry and Environmental Science, University of Sri Jayewardenepura (Vol. 17).Google Scholar
  6. Flood, J. (2007). Consultant Report for Bah Lias Research Station, Sumatra (20 pp).Google Scholar
  7. Fox, R. A. (1961). White root disease of Hevea brasiliensis: The identity of the pathogen. In Proceedings Natural Rubber Research Conference Rubber Research Institute of Malaya, 1969, Kuala Lumpur (pp. 473–482).Google Scholar
  8. Fox, R. A. (1965). The role of biological eradication in root disease control in replantings of Hevea brasiliensis. In K. F. Baker & W. C. Snyder (Eds.), Ecology of soil-borne pathogens (pp. 348–362). Berkeley: University of California Press.Google Scholar
  9. Fox, R. A. (1966). White root disease of Hevea brasiliensis: Collar protectant dressing. Journal Rubber Research Institute Malaya, 19, 231–241.Google Scholar
  10. Fox, R. A. (1971). A comparison of methods of dispersal, survival and parasitism in some fungi causing root diseases of tropical plantation crops. In T. A. Tousson, R. V. Vega, & P. H. Nelson (Eds.), Root diseases and soil-borne pathogens (pp. 179–187). Berkeley: University of California Press.Google Scholar
  11. Fox, R. A. (1977). The impact of ecological, cultural and biological factors on the strategy and costs of controlling root diseases in tropical plantation crops as exemplified by Hevea brasiliensis. Journal of the Rubber Research Institute of Sri Lanka, 54, 329–362.Google Scholar
  12. Gohet, E., Canh, T. V., Louandri, M., & Despereaux, D. (1991). New developments in chemical control of white root disease of Hevea brasiliensis in Africa. Crop Protection, 10, 234–238.CrossRefGoogle Scholar
  13. Hashim, I., & Azaldin, M. Y. (1985). Interaction of sulphur with soil pH and root diseases of Hevea rubber. Journal of the Rubber Research Institute of Malaysia, 33, 59–69.Google Scholar
  14. Hilton, R. N. (1960). Sporulation of Fomes lignosus, Fomes noxius and Ganoderma pseudoferreum. In Proceedings National Rubber Research Conference, Kuala Lumpur (pp. 496–502).Google Scholar
  15. John, K. P. (1964). Spore dissemination of root disease. Planters Bulletin Rubber Research Institute Malaya, 75, 233–37.Google Scholar
  16. John, K. P. (1965). Some observations on spore infection of Hevea stumps by Fomes lignosus (Klotzsch) Bres. Journal Rubber Research Institute Malaya, 19, 17–21.Google Scholar
  17. John, K. P. (1966). Effect of inoculum size and age of trees on root disease infection of Hevea brasiliensis. Journal of the Rubber Research Institute of Malaya, 19, 226–230.Google Scholar
  18. Lim, T. M., & Abdul Aziz, S. A. K. (1981). Triclopyr, a new arboricide for rubber. In Proceedings of Rubber Research Institute Malaysia, Planters Conference, Kuala Lumpur (pp. 327–336).Google Scholar
  19. Napper, R. P. N. (1932). Observations on the root disease of rubber trees caused by Fomes lignosus. Journal Rubber Research Institute Malaya, 4, 5–33.Google Scholar
  20. Newsam, A. (1963). Covers and root disease. Planters Bulletin Rubber Research Institute Malaya, 68, 177–81.Google Scholar
  21. Nuraziawati, M. Y., Azmi, C. A., & Haya, R. (2008). Screening of cocoa clones against white root disease for cocoa rootstocks. Malaysian Cocoa Journal, 4, 1–5.Google Scholar
  22. Pegler, D. N., & Waterston, J. M. (1968a). Rigidoporus lignosus. CMI descriptions of pathogenic fungi and bacteria (Vol. 198). Wallingford: CAB International.Google Scholar
  23. Peries, O. S., & Liyanage, S. (1985). Hevea diseases of economic importance and integrated methods of control. In Proceedings International Rubber Conference, Kuala Lumpur (pp. 255–269).Google Scholar
  24. Peries, O. S., & Liyanage, N. I. S. (1983). The use of sulphur for the control of white root disease caused by Rigidoporus lignosus. Journal of the Rubber Research Institute of Sri Lanka, 61, 35–40.Google Scholar
  25. Ridley, H. N. (1904). Parasitic fungi on Hevea brasiliensis. Agriculture Bulletin Federated Malay States, 3, 173–175.Google Scholar
  26. Rubber Research Institute of Malaysia. (1974a). Root disease. Part 1: Detection and recognition. Planters Bulletin Rubber Research Institute Malaysia, 133, 111–19.Google Scholar
  27. Rubber Research Institute of Malaysia. (1974b). Root diseases part 11: Control. Planters Bulletin Rubber Research Institute Malaysia, 134, 157–64.Google Scholar
  28. Soepena, H. (1993). Pemberantasan jamur akar putih dengn Trichoderma. Warta Perkaretan, 12, 17–22.Google Scholar
  29. Tan, A. M., & Ismail, H. (1992). Control of white root disease of rubber by fungicide drenching. In S. A. K. Abdul Aziz (Ed.), Towards greater viability of the rubber industry (pp. 343–358). Kuala Lumpur: Rubber Research Institute of Malaysia.Google Scholar

Phellinus noxius: Brown Root Disease

  1. Ann, P. J., Chang, T.-T., & Ko, W.-H. (2002). Phellinus noxius brown root rot of fruit and ornamental trees in Taiwan. Plant Disease, 86, 820–826.CrossRefGoogle Scholar
  2. Anon. (1976). Annual Report, 1975 (pp. 133–139). Kuala Lumpur: Rubber Research Institute of Malaysia.Google Scholar
  3. Bartz, F. (2007). Pathogen profile: Phellinus noxius (Corner) G. H. Cunningam. Department of Plant Pathology, North Carolina State University.
  4. Bolland, L. (1984). Phellinus noxius: Cause of a significant root-rot in Queensland hoop pine plantations. Australian Forestry, 47, 2–10.CrossRefGoogle Scholar
  5. Chang, T. T. (1995). A selective medium for Phellinus noxius. European Journal of Forest Pathology, 25, 185–90.CrossRefGoogle Scholar
  6. Chang, T. T., & Chang, R. J. (1999). Generation of volatile ammonia from urea fungicidal to Phellinus noxius in infested wood in soil under controlled conditions. Plant Pathology, 48, 337–344.CrossRefGoogle Scholar
  7. Corner, E. J. H. (1932). The identification of the brown root fungus. The Gardens Bulletin, Straits Settlements, 5, 317–350.Google Scholar
  8. Cunningham, G. H. (1965). Polyporaceae of New Zealand. New Zealand Department Scientific and Industrial Research Bulletin, 164, 221–222.Google Scholar
  9. Dann, E., Smith, L., Pegg, K., Grose, M., & Pegg, G. (2009). Report on Phellinus noxius, the cause of brown root rot in Australian avocados. Talking Avocados, 20, 28–34.Google Scholar
  10. Jacob, C. K., Annajutty, J., & Jayarathnam, K. (1991). Effect of fungal antagonists on Phellinus noxius causing brown root disease of Hevea. Indian Journal of Natural Rubber Research, 4, 142–145.Google Scholar
  11. Kothandaraman, R., Kochuthresiamma, J., Mathew, J., & Rajalakshmi, V. K. (1991). Actinomycete population in the rhizosphere of Hevea and its inhibitory effect on Phellinus noxius. Indian Journal of Natural Rubber Research, 4, 150–152.Google Scholar
  12. Lass, R. A. (1986). Diseases. In G. A. R. Wood & R. A. Lass (Eds.), Cocoa. Tropical agricultural series (pp. 265–365). London: Longman.Google Scholar
  13. Lim, T. K., Hamm, R. T., & Mohamad, R. B. (1990). Persistency and volatile behaviour of selected chemicals in treated soil against three basidiomycetous root disease pathogens. Tropical Pest Management, 36, 23–26.CrossRefGoogle Scholar
  14. Lim, T. K., & Teh, B. K. (1990). Antagonism in vitro of Trichoderma species against several basidiomycetous soil-borne pathogens and Sclerotium rolfsii. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 97, 33–41.Google Scholar
  15. Mappes, D., & Hiepko, G. (1984). New possibilities for controlling root diseases of plantation crops. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent, 49, 283–292.Google Scholar
  16. Nandris, D., Nicole, M., & Geiger, J. P. (1987). Variability among African populations of Rigidiporus lignosus and Phellinus noxious. European Journal of Forest Pathology, 15, 293–300.Google Scholar
  17. Pegler, D. N., & Waterston, J. M. (1968b). Phellinus noxious. CMI descriptions of pathogenic fungi and bacteria (Vol. 195). Wallingford: CAB International.Google Scholar
  18. See, L. S., Zakaria, I., Hashim, M. N., & Wan Razali, W. M. (1996). Impact of heart rot in Acacia mangium Willd. plantations of Peninsular Malaysia. Impact of diseases and insect pests in tropical forests. In Proceedings of the IUFRO Symposium, Peechi, November 23–26, 1993 (pp. 1–10).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Julie Flood
    • 1
    Email author
  • G. M. ten Hoopen
    • 2
  • Ulrike Krauss
    • 3
  • Andrews Akrofi
    • 4
  1. 1.CABIEghamUK
  2. 2.CIRAD, UPR BioagresseursMontpellierFrance
  3. 3.Palm Integrated Services and Solutions (PISS) Ltd.La BorneSaint Lucia
  4. 4.Cocoa Research Institute of GhanaAkim TafoGhana

Personalised recommendations