Advertisement

Origin, Dispersal, and Current Global Distribution of Cacao Genetic Diversity

  • Dapeng ZhangEmail author
  • Lambert Motilal

Abstract

Cacao (Theobroma cacao L.) is native to tropical South America, but as the unique source of cocoa butter and powder for the 200 billion USD global confectionery market, it is cultivated globally. Despite its economic importance, cocoa was, and continues to be, predominantly produced in low-input and low-output systems. Production constraints, including depletion of soil fertility on cacao farms, increasing damage due to diseases and pests, and expanding labor costs, limit cacao sustainability. Therefore, instead of increasing yields, the predominant contributing factor that keeps up with the rising demand for cocoa products has been expansion to new production regions. The future of the world’s cocoa economy depends significantly upon using germplasm with a broad genetic base to breed new varieties with disease and pest resistance, desirable quality traits, and the ability to adapt to changing environments. Cacao differs from major field crops with regard to the untapped wild populations, which are still abundant in the Amazon region where they are coevolving with the pathogens. Moreover, in the absence of reproductive barriers, these wild populations could be readily crossed with cultivated crops. Yet only a very small fraction of the wild germplasm, mostly represented by a small number of clones in the so-called Pound collection, has been used for breeding since the 1940s. Contributions from this small set of clones have made tremendous impacts in disease resistance and adaptability. However, breeding efforts in the past 70 years have been reshuffling this small fraction of genetic diversity, with little addition of new variation. The on-farm genetic diversity in Southeast Asia and West Africa is low and cannot meet the challenge of the mounting pressure from diseases and pests. New breeding strategies are needed to combine more disease resistance genes/alleles from untapped wild germplasm and provide farmers with enhanced genetic diversity.

Keywords

Cocoa Butter Primary Gene Pool Farm Selection Cacao Bean Cacao Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We wish to thank Sue Mischke and Mary Strem, SPCL, Beltsville Agricultural Research Center, USDA/ARS, for their review and editing of the manuscript. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable. USDA is an equal opportunity provider and employer.

References

  1. Aikpokpodion, P. (2012). Defining genetic diversity in the chocolate tree, Theobroma cacao L. grown in West and Central Africa. In M. Çalişkan (Ed.), Genetic diversity in plants, Chap. 10. InTech. doi: 10.5772/33101. Available from http://www.intechopen.com/books/genetic-diversity-in-plants/defining-genetic-diversity-in-the-chocolate-tree-theobroma-cacao-l-grown-in-west-and-central-africa
  2. Aikpokpodion, P. O., Motamayor, J. C., Adetimirin, V. O., Adu-Ampomah, Y., Ingelbrecht, I., Eskes, A. B., Schnell, R. J., Kolesnikova-Allen, M. (2009). Genetic diversity assessment of sub-samples of cacao, Theobroma cacao L. collections in West Africa using simple sequence repeats marker. Tree Genetics and Genomes, 5, 699–711.Google Scholar
  3. Aime, M. C., & Phillips-Mora, W. (2005). The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia, 97, 1012–1022.CrossRefPubMedGoogle Scholar
  4. Almeida, C. M. V. C. (2001). Ecology of natural populations. In L. A. S. Dias (Ed.), Genetic improvement of cacao, Chap. 4 (EcoPort version by P. Griffee, FAO). Available at http://ecoport.org/ep?SearchType=earticleView&earticleId=197&page=-2#section2690
  5. Alves, R. M., Sebbenn, A. M., Artero, A. S., Clement, C., & Figueira, A. (2007). High levels of genetic divergence and inbreeding in populations of cupuassu (Theobroma grandiflorum). Tree Genetics and Genomes, 3, 289–298.CrossRefGoogle Scholar
  6. Asare, R., Afari-Sefa, V., Gyamfi, I., Okafor, C., & Mva Mva, J. (2010). Cocoa seed multiplication: An assessment of seed gardens in Cameroon, Ghana and Nigeria (STCP Working Paper Series, Issue 11). Accra: Sustainable Tree Crops Program (STCP), International Institute of Tropical Agriculture.Google Scholar
  7. Baligar, V. C., & Fageria, N. K. (2014). Nutrient use efficiency in plants: An overview. In A. Rakshit, H. B. Singh, & A. Sen (Eds.), Nutrient use efficiency: From basics to advances (pp. 1–14). New Delhi: Springer.Google Scholar
  8. Barros, O. (1981). Avances en la represión de la moniliasis del cacao. In Proceedings of the Eighth International Cocoa Research Conference. Cargagena: Cocoa Producers’ Alliance.Google Scholar
  9. Bartley, B. G. D. (1994). A review of cacao improvement: Fundamentals, methods and results. In M. J. End, A. B. Eskes, M. T. Lee, & G. Lockwood (Eds.), Proceedings of the International Workshop Cocoa Breeding Strategies (pp. 3–16). Kuala Lumpur: INGENIC. Available at http://www.incocoa.org/data/ingenic_workshop_1_proceedings_1994.pdf.Google Scholar
  10. Bartley, B. G. D. (2005). The genetic diversity of Cacao and its utilization. Wallingford: CABI Publishing.CrossRefGoogle Scholar
  11. Bayer, C., & Kubitzki, K. (2003). Malvaceae. In K. Kubitzki (Ed.), The families and genera of vascular plants. Dicotyledons: Malvales, Capparales and non-betalain Caryophyllales (Vol. 5, pp. 225–311). Berlin: Springer.Google Scholar
  12. Bergmann, J. F. (1969). The distribution of cacao cultivation in pre-Columbian America. Annals of the Association of American Geographers, 59, 85–96. doi: 10.1111/j.1467-8306.1969.tb00659.x.CrossRefGoogle Scholar
  13. Besse, J. (1975). La selection generative du cacaoyer en Cote d’Ivoire: bilan et orientation des recherches en 1975. In Proceedings of the Fifth International Cocoa Research Conference. Ibadan: Cocoa Producers’ Alliance.Google Scholar
  14. Chan, C. L., & Syed, K. S. W. (1976). Vascular-streak dieback of cocoa in Peninsula Malaysia. In Proceedings of the Cocoa Coconut Seminar (pp. 134–144). Tawau: East Malaysia Planters’ Association.Google Scholar
  15. Chapman, R. K., & Soria, S. J. (1983). Comparative Forcipomyia (Diptera, Ceratopogonidae) pollination of cacao in Central America and Southern Mexico. Revista Theobroma (Brasil), 13, 129–139.Google Scholar
  16. Cheesman, E. (1944). Notes on the nomenclature, classification and possible relationships of cocoa populations. Tropical Agriculture, 21, 145–146.Google Scholar
  17. Clement, C. R. (1999). 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Economic Botany, 53, 188–202.CrossRefGoogle Scholar
  18. Clement, C. R., de Cristo-Araújo, M., d’Eeckenbrugge, G. C., Pereira, A. A., & Picanço-Rodrigues, D. (2010). Origin and domestication of native Amazonian crops. Diversity, 2, 72–106. doi: 10.3390/d2010072.CrossRefGoogle Scholar
  19. Coe, S. D., & Coe, M. D. (1996). The true history of chocolate. London: Thames and Hudson.Google Scholar
  20. Cope, F. W. (1962). The mechanism of pollen incompatibility in Theobroma cacao L. Economic Botany, 17, 157–182.Google Scholar
  21. Cuatrecasas, J. (1964). Cacao and its allies, a taxonomic revision of the genus Theobroma. In Contributions from the United States National Herbarium (Vol. 35, pp. 379–614). Washington, DC: Smithsonian Institution.Google Scholar
  22. de Schawe, C. C., Durka, W., Tscharntke, T., Hensen, I., & Kessler, M. (2013). Gene flow and genetic diversity in cultivated and wild cacao (Theobroma cacao) in Bolivia. American Journal of Botany, 100, 2271–2279.CrossRefGoogle Scholar
  23. Dias, L. A. S. (2001a). Origin and distribution of Theobroma cacao L: A new scenario. In L. A. S. Dias (Ed.), Genetic improvement of cacao, Chap. 3 (EcoPort version by P. Griffee, FAO). Available at http://ecoport.org/ep?SearchType=earticleView&earticleId=197&page=-2#section2683
  24. Dias, L. A. S. (2001b). The contributions of breeding. In L. A. S. Dias (Ed.), Genetic improvement of cacao, Chap. 12 (EcoPort version by P. Griffee, FAO). Available at http://ecoport.org/ep?SearchType=earticleView&earticleId=197&page=-2#section2737
  25. Dias, L. A. S., & Resende, M. D. V. (2001). Selection strategies and methods. In L. A. S. Dias (Ed.), Genetic improvement of cacao, Chap. 6 (EcoPort version by P. Griffee, FAO). Available at http://ecoport.org/ep?SearchType=earticleView&earticleId=197&page=-2#section2701
  26. Edwin, J., & Masters, W. A. (2005). Genetic improvement and cocoa yields in Ghana. Experimental Agriculture, 41, 491–503.CrossRefGoogle Scholar
  27. Efombagn, M. I. B., Motamayor, J. C., Sounigo, O., Eskes, A. B., Nyassé, S., Cilas, C., et al. (2008). Genetic diversity and structure of farm and genebank accessions of cacao (Theobroma cacao L.) in Cameroon revealed by microsatellite markers. Tree Genetics and Genomes, 4, 821–831.CrossRefGoogle Scholar
  28. Efombagn, M. I. B., Sounigo, O., Nyasse, S., Manzanares-Dauleux, M., Cilas, C. B., Eskes, A. B., et al. (2006). Genetic diversity in cocoa germplasm of southern Cameroon revealed by simple sequences repeat (SSRs) markers. African Journal of Biotechnology, 5, 1441–1449.Google Scholar
  29. Eskes, A. B. (Ed). (2011). Collaborative and participatory approaches to cocoa variety improvement. Final report of the CFC/ICCO/Bioversity project on “Cocoa productivity and quality improvement: A participatory approach” (2004–2010). Amsterdam, London and Rome: CFC, ICCO, and Bioversity International. Available at http://www.bioversityinternational.org/e-library/publications/detail/collaborative-and-participatory-approaches-to-cocoa-variety-improvement/
  30. Eskes, A. B., & Efron, Y. (Eds). (2006). Global approaches to cocoa germplasm utilization and conservation. Final report of the CFC/ICCO/IPGRI project on “Cocoa germplasm utilization and conservation: A global approach” (1998–2004). London and Rome: ICCO and IPGRI. Available at http://www.bioversityinternational.org/e-library/publications/
  31. Ferry, R. J. (1989). The colonial elite of Caracas: Formation and crisis 1567-1767. Berkeley: University of California Press. Available at http://publishing.cdlib.org/ucpressebooks/view?docId=ft5r29n9wb&chunk.id=d0e167&toc.depth=1&toc.id=d0e167&brand=ucpress.Google Scholar
  32. Firman, I. D., & Vernon, A. J. (1970). Cocoa canker caused by Phytophthora palmivora. Annals of Applied Biology, 65, 65–73.CrossRefGoogle Scholar
  33. Food and Agricultural Organization. (2014). FAOSTAT. Food and Agricultural Commodities Production. Available at http://faostat.fao.org/site/339/default.aspx
  34. Goenaga, R. J., Guiltinan, M., Maximova, S., Seguine, E., & Irrizary, H. (2015). Yield performance and bean quality traits of cacao propagated by grafting and somatic embryo-derived cuttings. HortScience, 50, 358–362.Google Scholar
  35. Gómez-Pompa, A., Flores, J. S., & Fernandez, M. A. (1990). The sacred cacao groves of the Maya. Latin American Antiquity, 1, 247–257. doi: 10.2307/972163. Available at http://www.jstor.org/stable/972163?seq=1#page_scan_tab_contents.CrossRefGoogle Scholar
  36. Gonsalves, C. (1996). History of cocoa breeding in the Ministry of Agriculture, Trinidad. Cocoa Research Unit Newsletter, 3, 4–6.Google Scholar
  37. Henderson, J. S., Joyce, R. A., Hall, G. R., Hurst, W. J., & McGovern, P. E. (2007). Chemical and archaeological evidence for the earliest cacao beverages. Proceedings of the National Academy of Sciences USA, 104, 18937–18940.CrossRefGoogle Scholar
  38. Historicus. (1896). Cocoa: All about it. London: Sampson Low Marston (Reproduction 2013, HardPress Publishing).Google Scholar
  39. International Cocoa Organization. (2012). The World Cocoa Economy: Past and present. London: ICCO. Available at http://www.icco.org/about-us/international-cocoa-agreements/cat_view/30-related-documents/45-statistics-other-statistics.html.Google Scholar
  40. International Cocoa Organization. (2013). Processing cocoa: Summary of the process of transforming cocoa beans into chocolate. Available at http://www.icco.org/about-cocoa/processing-cocoa.html
  41. Ji, K., Zhang, D., Motilal, L. A., Boccara, M., Lachenaud, P., & Meinhardt, L. W. (2013). Genetic diversity and parentage in farmer varieties of cacao (Theobroma cacao) L. from Honduras and Nicaragua as revealed by single nucleotide polymorphism (SNP) markers. Genetic Resources and Crop Evolution, 60, 441–453.CrossRefGoogle Scholar
  42. Johnson, W. H. (1912). Cocoa: Its cultivation and preparation. London: John Murray. Available at http://ia902608.us.archive.org/1/items/cocoaitscultivat00johnrich/cocoaitscultivat00johnrich.pdf.CrossRefGoogle Scholar
  43. Johnson, E. S., Bekele, F. B., Brown, S. J., Song, Q., Zhang, D., Meinhardt, L. W., et al. (2009). Population structure and genetic diversity of the Trinitario cacao (Theobroma cacao L.) from Trinidad and Tobago. Crop Science, 49, 564–572.CrossRefGoogle Scholar
  44. Joseph, E. L. ([1838] 1970). History of Trinidad (Cass Library of West Indian Studies No. 13). London: Frank Cass and Co. Ltd (Reprinted).Google Scholar
  45. Kimber, C. T. (1988). Martinique revisited. The changing plant geographies of a West Indian Island. College Station, TX: Texas A&M University Press.Google Scholar
  46. Lachenaud, P., Mooleedhar, V., & Couturier, C. (1997). Les cacaoyers spontanés de Guyane: Nouvelles prospections (Wild cocoa trees in French Guiana. New Surveys). Plantations, Recherche, Développement, 4, 25–32.Google Scholar
  47. Lachenaud, P., & Sallée, B. (1993). Les cacaoyers spontanés de Guyane. Localisation, écologie, morphologie. Café, Cacao, Thé (Paris), 37, 101–114.Google Scholar
  48. Lachenaud, P., & Zhang, D. P. (2008). Genetic diversity and population structure in wild stands of cacao trees (Theobroma cacao L.) in French Guiana. Annals of Forest Science, 65, 310–317.CrossRefGoogle Scholar
  49. Lanaud, C., Fouet, O., Clément, D., Boccara, M., Risterucci, A. M., Surujdeo-Maharaj, S., et al. (2009). A meta-QTL analysis of disease resistance traits of Theobroma cacao L. Molecular Breeding, 24, 361–374.CrossRefGoogle Scholar
  50. Lanaud, C., Sounigo, O., Amefia, Y. K., Paulin, D., Lachenaud, P., & Clément, D. (1987). Nouvelles donnés sur le fonctionnement du système d’incompatibilitè du cacaoyer et ses conséquences pour la sélection. Café, Cacao, Thé (Paris), 31, 267–277.Google Scholar
  51. Lass, R. A. (1985). Diseases. In G. A. R. Wood & R. A. Lass (Eds.), Cocoa (4th ed., pp. 265–365). Oxford: Blackwell Science.Google Scholar
  52. Lockwood, G., & End, M. (1993). History, technique and future needs for cacao collection. In Proceedings of International Workshop on Conservation and Utilization of Cocoa Genetic Resources in the 21st Century, 1992 (pp. 1–14). Port of Spain: Cocoa Research Unit, The University of the West Indies.Google Scholar
  53. Lockwood, G., & Pang, J. T. Y. (1996). Yields of cocoa clones in response to planting density in Malaysia. Experimental Agriculture, 32, 41–47.CrossRefGoogle Scholar
  54. Loor Solorzano, R. G., Fouet, O., Lemainque, A., Pavek, S., Boccara, M., Argout, X., Amores, F., Courtois, B., Risterucci, A. M., & Lanaud, C. (2012). Insight into the wild origin, migration and domestication history of the fine flavour Nacional Theobroma cacao L variety from Ecuador. PLoS One, 7, e48438. doi: 10.1371/journalpone0048438.PubMedCentralCrossRefPubMedGoogle Scholar
  55. Maharaj, K., Indalsingh, T., Ramnath, D., & Cumberbatch, A. (2005). High density planting of cacao: The Trinidad and Tobago experience. In F. Bekele, M. End, & A. B. Eskes (Eds.), Proceedings of the International Workshop on Cocoa Breeding for Improved Production Systems (pp. 171–182). Accra: INGENIC and the Ghana Cocoa Board.Google Scholar
  56. Maximova, S. N., Young, A., Pishak, S., Miller, C., Traore, A., & Guiltinan, M. J. (2005). Integrated system for propagation of Theobroma cacao L. In S. M. Jain & P. K. Gupta (Eds.), Protocols for somatic embryogenesis in woody plants (pp. 209–229). Dordrecht: Springer.CrossRefGoogle Scholar
  57. Moriarty, K., Elchinger, M., Hill, G., Katz, J., & Barnett, J. (2014). Cacao intensification in Sulawesi: A green prosperity model project (NREL Work for Others Report: NREL/TP-5400-62434). Golden, CO: National Renewable Energy Laboratory. Available at http://www.nrel.gov/docs/fy14osti/62434.pdf.Google Scholar
  58. Motamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., et al. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One, 3, e3311. doi: 10.1371/journal.pone.0003311.PubMedCentralCrossRefPubMedGoogle Scholar
  59. Motilal, L., & Butler, D. (2003). Verification of identities in global cacao germplasm collections. Genetic Resources and Crop Evolution, 50, 799–807.CrossRefGoogle Scholar
  60. Motilal, L. A., & Sreenivasan, T. N. (2012). Revisiting 1727: Crop failure leads to the birth of Trinitario cacao. Journal of Crop Improvement, 26, 599–626.CrossRefGoogle Scholar
  61. Motilal, L., Zhang, D., Umaharan, P., Mischke, S., Mooleedhar, V., & Meinhardt, L. W. (2010). The relic Criollo cacao in Belize-genetic diversity and relationship with Trinitario and other cacao clones held in the International Cocoa Genebank, Trinidad. Plant Genetic Resources: Characterization and Utilization, 8, 106–115. doi: 10.1017/S1479262109990232. Available at http://dx.doi.org/doi: 10.1017/S1479262109990232.CrossRefGoogle Scholar
  62. Pang, J. T. Y. (2006). Yield efficiency in progeny trials with cocoa. Experimental Agriculture, 42, 289–299.CrossRefGoogle Scholar
  63. Pereira, J. L., Pizzigatti, R., & Mandarino, E. P. (1980). Levantamento fitosanitário das áreas afectadas pelo cancro de Phytophthora do cacaueiro nos estados da Bahia e Espirito Santo. Boletim Técnico, 72. Itabuna: CEPLAC. Available at http://www.ceplac.gov.br/paginas/publicacoes/paginas/boletim_tecnico/cartilhas/BOLETIM%20TÉC.%20N°%2072.pdf
  64. Pokou, N. D., N’Goran, J. A. K., Lachenaud, P., Eskes, A. B., Motamayor, J. C., Schnell, R., et al. (2009). Recurrent selection of cocoa populations in Côte d’Ivoire: Comparative genetic diversity between the first and second cycles. Plant Breeding, 128, 514–520. doi: 10.1111/j.1439-0523.2008.01582.x.CrossRefGoogle Scholar
  65. Posnette, A. F. (1986). Fifty years of cocoa research in Trinidad and Tobago. St. Augustine: Cocoa Research Unit, University of the West Indies.Google Scholar
  66. Pound, F. J. (1932). The genetic constitution of the cacao crop. In F. Annual (Ed.), Report on cacao research (Vol. 193, pp. 10–24). Port of Spain: GPO.Google Scholar
  67. Pound, F. J. (1934). The progress of selection. In Third Annual Report on Cacao Research, 1933 (Vol. 25–28). Port of Spain: Government Printing Office.Google Scholar
  68. Pound, F. J. (1938). Cacao and Witches’ broom disease (Marasmius perniciosus) of South America with notes on other species of Theobroma. Port of Spain: Yuille’s Printery.Google Scholar
  69. Pound, F. J. (1943). Cacao and Witches’ broom disease (Marasmius perniciosus). Port of Spain: Yuille’s Printery.Google Scholar
  70. Pound, F. J. (1945). A note on the cacao population of South America. In Report and Proceedings of the Cocoa Research Conference held at Colonial Office, May-June 1945 (pp. 131–133). London: His Majesty’s Stationery Office.Google Scholar
  71. Powis, T. G., Cyphers, A., Gaikwad, N. W., Grivetti, L., & Cheong, K. (2011). Cacao use and the San Lorenzo Olmec. Proceedings of the National Academy of Sciences USA, 108, 8595–8600.CrossRefGoogle Scholar
  72. Preuss, P. (1901). Der Kakao, seine Kultur und Aufbereitung [Cocoa, its cultivation and preparation]. In Expedition Nach Central- Und Südamerika (Chap. 13, pp. 167–277). Berlin: Colonial Economic Committee. Reprinted 1985: Archives of Cocoa Research 3, 15–115, Brussels: International Office of Cocoa and Chocolate.Google Scholar
  73. Puentes–Páramo, Y. J., Menjivar–Flores, J. C., Gómez–Carabalí, A., & Aranzazu–Hernández, F. (2014). Absorción y distribución de nutrientes en clones de cacao y sus efectos en el rendimiento [Absorption and distribution of nutrients in cocoa and its effect on yield]. Acta Agronómica, 63, 145–152.Google Scholar
  74. Quesnel, V. C. (1967). A short history of cacao and chocolate: 1. Historical. Journal of the Agricultural Society of Trinidad and Tobago, 67, 19–24.Google Scholar
  75. Ratnam, R. (1961). Introduction of Criollo cacao into Madras state. South Indian Horticulture, 9, 24–29.Google Scholar
  76. Rocha, H. M., & Ram, C. (1971). Cancro em cacaueiros na Bahia. Revista Theobroma (Brasil), 1, 44–47.Google Scholar
  77. Ruf, F., & Schroth, G. (2004). Chocolate forests and monocultures: An historical review of cocoa growing and its conflicting role in tropical deforestation and forest conservation. In G. Schroth, G. A. B. Fonseca, C. A. Harvey, C. Gascon, H. L. Vasconcelos, & A. M. N. Izac (Eds.), Agroforestry and biodiversity conservation in tropical landscapes (pp. 107–134). Washington: Island Press.Google Scholar
  78. Sánchez, P. A., Jaffé, K., & Muller, M. C. (1989). El género Theobroma en el Territorio Federal Amazonas (Venezuela). I. Notas etnobotánicas y consideraciones agronómicas. Turrialba, 39, 440–446. Available at http://atta.labb.usb.ve/Klaus/art48.pdf.Google Scholar
  79. Sereno, M. L., Albuquerque, P. S. B., Vencovsky, R., & Figueira, A. (2006). Genetic diversity and natural population structure of cacao (Theobroma cacao L) from the Brazilian Amazon evaluated by microsatellite markers. Conservation Genetics, 7, 13–24.CrossRefGoogle Scholar
  80. Shephard, C. Y. (1932). The cacao industry of Trinidad: Some economic aspects. Part III–History of the industry up to 1870. Port of Spain: Government Printing Office.Google Scholar
  81. Shephard, C. ([1831] 1971). An historical account of the Island of Saint Vincent. London: Frank Cass and Co. Ltd (Published 1971).Google Scholar
  82. Silva, C. R. S., Albuquerque, P. B. S., Ervedosa, F. R., Mota, J. W. S., Figueira, A., & Sebbenn, A. M. (2011). Understanding the genetic diversity, spatial genetic structure and mating system at the hierarchical levels of fruits and individuals of a continuous Theobroma cacao population from the Brazilian Amazon. Heredity, 106, 973–985.PubMedCentralCrossRefPubMedGoogle Scholar
  83. Silva, C. R. S., & Figueira, A. (2005). Phylogenetic analysis of Theobroma (Sterculiaceae) based on Kunitz-like trypsin inhibitor sequences. Plant Systematics and Evolution, 250, 93–104.CrossRefGoogle Scholar
  84. Silva, C. R. S., Figueira, A. V. O., & Souza, C. A. S. (2001). Diversity in the genus Theobroma. In L. A. S. Dias (Ed.), Genetic improvement of cacao, Chap. 2 (EcoPort version by P. Griffee, FAO). Available at http://ecoport.org/ep?SearchType=earticleView&earticleId=197&page=2679
  85. Silva, C. R. S., Venturieri, G. A., & Figueira, A. (2004). Description of Amazonian Theobroma L. collections, species identification, and characterization of interspecific hybrids. Acta Botanica Brasilica, 18, 333–341.CrossRefGoogle Scholar
  86. Soberanis, W., Rios, R., Arevalo, E., Zuniga, L., Cabezas, O., & Krauss, U. (1999). Increased frequency of phytosanitary pod removal in cacao (Theobroma cacao) increases yield economically in eastern Peru. Crop Protection, 10, 677–685.CrossRefGoogle Scholar
  87. Southey, T. ([1827] 1968). Chronological history of the West Indies (Vol. II). London: Frank Cass and Co. Ltd (Reprinted).Google Scholar
  88. Stander, J. R. (1993). Pre-breeding from the perspective of the private plant breeder. Journal of Sugar Beet Research, 30, 197–207.CrossRefGoogle Scholar
  89. Surujdeo-Maharaj, S., Umaharan, P., & Iwaro, A. D. (2001). A study of genotype-isolate interaction in cacao (Theobroma cacao L): Resistance of cacao genotypes to isolates of Phytophthora palmivora. Euphytica, 118, 295–303.CrossRefGoogle Scholar
  90. Susilo, A., Zhang, D., Motilal, L., & Meinhardt, L. W. (2011). Assessing genetic diversity in java fine-flavor cocoa (Theobroma cacao L.) germplasm by simple sequence repeat (SSR) markers. Tropical Agriculture, 55, 84–92.Google Scholar
  91. Tahi, G. M., Kebe, B. I., Eskes, A. B., Ouattara, S., Sangare, A., & Mondeil, F. (2000). Rapid screening of cacao genotypes for field resistance to Phytophthora palmivora using leaves, twigs and roots. European Journal of Plant Pathology, 106, 87–94.CrossRefGoogle Scholar
  92. Thomas, E., van Zonneveld, M., Loo, J., Hodgkin, T., Galluzzi, G., & van Etten, J. (2012). Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in Pleistocene refugia followed by human-influenced dispersal. PLoS One, 7, e47676. doi: 10.1371/journal.pone.0047676.PubMedCentralCrossRefPubMedGoogle Scholar
  93. Thong, K. C., Ng, S. K., Ooi, H. S. H., & Leng, K. Y. (1992). Cocoa in Peninsular Malaysia I: The early history. Cocoa Growers’ Bulletin, 45, 7–25.Google Scholar
  94. Toxopeus, H. (1964). F3 Amazon in Nigeria. In Annual Report of the Cocoa Research Institute of Nigeria, Ibadan, 1963/64, 13–23. Reprinted 1982: Archives of Cocoa Research, 1, 179–191.Google Scholar
  95. Toxopeus, H. (1985). Botany, types and populations. In G. A. R. Wood & R. A. Lass (Eds.), Cocoa (4th ed., pp. 11–37). Oxford: Blackwell Science.Google Scholar
  96. Toxopeus, H., & Kennedy, A. J. (1984). A review of the Cocoa Research Unit programme. In C. Research (Ed.), Unit report for 1981-1983 (pp. 8–12). St. Augustine: The University of the West Indies.Google Scholar
  97. Van Hall, C. J. J. (1932). Cacao (2nd ed.). London: Macmillan and Co., Limited.Google Scholar
  98. Woods, D. (2003). The tragedy of the cocoa pod: Rent-seeking, land and ethnic conflict in Ivory Coast. The Journal of Modern African Studies, 41, 641–655.CrossRefGoogle Scholar
  99. Wood, G. A. R. (1985a). History and development. In G. A. R. Wood & R. A. Lass (Eds.), Cocoa (4th ed., pp. 1–10). Oxford: Blackwell Science.Google Scholar
  100. Wood, G. A. R. (1985b). Production. In G. A. R. Wood & R. A. Lass (Eds.), Cocoa (4th ed., pp. 543–586). Oxford: Blackwell Science.Google Scholar
  101. Wood, G. A. R. (1991). A history of early cocoa introductions. Cocoa Growers’ Bulletin, 44, 7–12.Google Scholar
  102. Wood, G. A. R., & Lass, R. A. (Eds.). (2001). Cocoa (4th ed.). Oxford: Blackwell Science.Google Scholar
  103. Wood, G. A. R., & Lass, R. A. (Eds.). (2008). Cocoa (4th ed.). Hoboken, NJ: Wiley Online Library. doi: 10.1002/9780470698983. Available at http://onlinelibrary.wiley.com/book/10.1002/9780470698983
  104. World Cocoa Foundation. (2012). Cocoa market update. Available at http://worldcocoafoundation.org/wp-content/uploads/Cocoa-Market-Update-as-of-3.20.2012.pdf
  105. Yang, J. Y., Scascitelli, M., Motilal, L. A., Sveinsson, S., Engels, J. M. M., Kane, N., et al. (2013). Complex origin of Trinitario-type Theobroma cacao (Malvaceae) from Trinidad and Tobago revealed using plastid genomics. Tree Genetics and Genomes, 9, 829–840. doi: 10.1007/s11295-013-0601-4.CrossRefGoogle Scholar
  106. Young, A. M. (1994). The chocolate tree: A natural history of cacao. Washington, DC: Smithsonian Nature Books.Google Scholar
  107. Zhang, D. P., Arevalo-Gardini, E., Mischke, S., Zúñiga-Cernades, L., Barreto-Chavez, A., & Adriazola del Aguila, J. (2006). Genetic diversity and structure of managed and semi-natural populations of cacao (Theobroma cacao) in the Huallaga and Ucayali valleys of Peru. Annals of Botany, 98, 647–655.PubMedCentralCrossRefPubMedGoogle Scholar
  108. Zhang, D. P., Boccara, M., Motilal, L., Mischke, S., Johnson, E. S., Butler, D. R., et al. (2009). Molecular characterization of an earliest cacao (Theobroma cacao L) collection from Peruvian Amazon using microsatellite DNA markers. Tree Genetics and Genomes, 5, 595–607. doi: 10.1007/s11295-009-0212-2.CrossRefGoogle Scholar
  109. Zhang, D. P., Figueira, A., Motilal, L., Lachenaud, P., & Meinhardt, L. W. (2011). Theobroma. In C. Kole (Ed.), Wild crop relatives: Genomic and breeding resources (pp. 277–296). Berlin: Springer.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Sustainable Perennial Crops LaboratoryUSDA-ARSBeltsvilleUSA
  2. 2.Cocoa Research Centre, The University of the West IndiesSt. AugustineTrinidad and Tobago

Personalised recommendations