Advertisement

Conclusion and Outlook

  • Debora AmadoriEmail author
  • Laurent Gosse
Chapter
  • 343 Downloads
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

In this final chapter we address some problems to which the analysis could be extended. In view of the possible extension of the well-balanced approach to a two-dimensional situation, numerical simulations of two-dimensional Riemann problems for the linear wave equation are shown, together with possible difficulties arising in the application of a Godunov strategy.

Keywords

Coupling with Poisson equation 2-dimensional Riemann solver for linear system 

References

  1. 1.
    P. Bagnerini, R.M. Colombo, A. Corli, On the role of source terms in continuum traffic flow models. Math. Comput. Model. 44, 917–930 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    B. Bidégaray, J.M. Ghidaglia, Multidimensional corrections to cell-centered finite volume methods for Maxwell equations. Appl. Numer. Math. 44(3), 281–298 (2003)Google Scholar
  3. 3.
    F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for Sources, Frontiers in Mathematics series (Birkhäuser, Basel, 2004). ISBN 3-7643-6665-6Google Scholar
  4. 4.
    T. Boukadida, A.-Y. LeRoux, A two-dimensional version of the Lax-Friedrichs scheme. Math. Comput. 63, 541–553 (1994)Google Scholar
  5. 5.
    M. Brio, A.R. Zakharian, G.M. Webb, Two-dimensional riemann solver for euler equations of gas dynamics. J. Comput. Phys. 167, 177–195 (2001)Google Scholar
  6. 6.
    B. Despres, Ch. Buet, The structure of well-balanced schemes for linear Friedrichs systems. Appl. Math. Comput. doi: 10.1016/j.amc.2015.04.085
  7. 7.
    D. Drikakis, P.K. Smolarkiewiczy, On spurious vortical structures. J. Comput. Phys. 172, 309–325 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    V. Elling, The carbuncle phenomenon is incurable. Acta Math. Sci. 29B(6), 1647–1656 (2009)Google Scholar
  9. 9.
    V. Elling, Relative entropy and compressible potential flow. Acta Math. Sci. Ser. B Engl. Ed. 35(4), 763–776 (2015)Google Scholar
  10. 10.
    H. Gilquin, J. Laurens, C. Rosier, Multi-dimensional Riemann problems for linear hyperbolic systems: Part I, eds. A. Donato et al. Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden (1993), pp 284–290Google Scholar
  11. 11.
    H. Gilquin, J. Laurens, C. Rosier, Multi-dimensional Riemann problems for linear hyperbolic systems: Part II, eds. A. Donato et al. Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden (1993) pp. 284–290Google Scholar
  12. 12.
    H. Gilquin, J. Laurens, C. Rosier, Multi-dimensional Riemann problems for linear hyperbolic systems. RAIRO—Model. Math. Anal. Num. 30, 527–548 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    S.K. Godunov, Reminiscences about difference schemes. J. Comput. Phys. 153, 6–25 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    L. Gosse, Computing Qualitatively Correct Approximations of Balance Laws (Springer, New York, 2013). ISBN 978-88-470-2891-3CrossRefzbMATHGoogle Scholar
  15. 15.
    L. Gosse, A two-dimensional version of the Godunov scheme for scalar balance laws, vol. 52. (SIMAI Springer Series, Springer, 2014), pp.626–652Google Scholar
  16. 16.
    L. Gosse, A well-balanced and asymptotic-preserving scheme for the one-dimensional linear Dirac equation, BIT Numer. Math. 55, 433–458 (2015)Google Scholar
  17. 17.
    L. Gosse, Locally inertial approximations of balance laws arising in (1+1)-dimensional general relativity, SIAM J. Applied Math. 75(3), 1301–1328Google Scholar
  18. 18.
    S. Jin, Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimension. Comm. Pure Appl. Math. 48, 235–276 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A. Jüngel, Transport Equations for Semiconductors, Lecture Notes in Physics (Springer, Berlin, 2009)CrossRefGoogle Scholar
  20. 20.
    L. Hsiao, K. Zhang, The relaxation of the hydrodynamic model for semiconductors to the driftdiffusion equations. J. Differ. Equ. 165, 315–354 (2000)CrossRefzbMATHGoogle Scholar
  21. 21.
    J. Laurens, Multi-dimensional numerical schemes, eds. A. Donato et al. Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden (1993), pp. 393–400Google Scholar
  22. 22.
    D. Li, S. Qian, Solutions for a hydrodynamic model of semiconductors. J. Math. Anal. Appli. 242, 237–254 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    J. Li, M. Lukacova, G. Warnecke, Evolution Galerkin schemes applied to two-dimensional Riemann problems for the wave equation system. DCDS-B 9, 559–576 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    T. Li, W. Sheng, The general Riemann problem for the linearized system of two-dimensional isentropic flow in gas dynamics. J. Math. Anal. Appl. 276, 598–610 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    J. Li, T. Zhang, S. Yang. The Two-Dimensional Riemann Problem in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics (1998). ISBN 0582244080Google Scholar
  26. 26.
    P. Marcati, R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation. Archive Rati. Mech. Anal. 129, 129–145 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    R.E. Mickens, Applications of Nonstandard Finite Difference Schemes (World Scientific, Singapore, 2000)CrossRefzbMATHGoogle Scholar
  28. 28.
    S. Mishra, E. Tadmor, Constraint preserving schemes using potential-based fluxes. I. Multidimensional transport equations, Comm. Computational. Physics 9(3), 688–710 (2010)Google Scholar
  29. 29.
    M.H. Pham, M. Rudgyard, E. S’uli, Bicharacteristic methods for multi-dimensional hyperbolic systems, Godunov methods: theory and applications, ed. by E.F. Toro (Kluwer Academic/Plenum, New York) 2001Google Scholar
  30. 30.
    F. Poupaud, M. Rascle, J.P. Vila, Global solutions to the isothermal Euler-Poisson system with arbitrarily large data. J. Differ. Equ. 123, 93–121 (1995)Google Scholar
  31. 31.
    P.L. Roe, Discontinuous solutions to hyperbolic systems under operator splitting. Numer. Methods Partial Differ. Equ. 7, 277–297 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    P.L. Roe, Vorticity Capturing, AIAA paper 01-2523 (2001)Google Scholar
  33. 33.
    B. Wendroff, A two-dimensional hlle riemann solver and associated Godunov-type difference scheme for gas dynamics. Comput. Math. Appl. 38, 175–185 (1999)Google Scholar
  34. 34.
    C. Shuxing, Multidimensional Riemann problem for semilinear wave equations. Comm. Partial Differ. Equ. 17(5–6), 715–736 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Y. Zhang, Global solution to a cubic nonlinear Dirac equation in 1 + 1 dimensions, arXiv:1304.1989vl [math.AP] 7 Apr 2013
  36. 36.
    Y. Zheng, Systems of Conservation Laws: Two-Dimensional Riemann Problems, Progress in Nonlinear Differential Equations and Their Applications. 38 (Birkhauser Verlag)Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.DISIMUniversità degli Studi dell’AquilaL’AquilaItaly
  2. 2.Istituto per le Applicazioni del CalcoloCNRRomeItaly

Personalised recommendations