Advertisement

Position-Dependent Scalar Balance Laws

  • Debora AmadoriEmail author
  • Laurent Gosse
Chapter
  • 349 Downloads
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

In this chapter we illustrate our approach to the error estimate analysis, for a scalar, space-dependent, non-resonant balance law. A wave-front tracking scheme is analyzed, leading to a generic linear dependence in time of the error. Numerical illustrations are given for accretive case and for the case of periodic forcing.

Keywords

Space-dependent balance laws Non-resonance 

References

  1. 1.
    D. Amadori, L. Gosse, Transient \(L^1\) error estimates for well-balanced schemes on non-resonant scalar balance laws. J. Differential Equations 255, 469–502 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    D. Amadori, L. Gosse, G. Guerra, Godunov-type approximation for a general resonant balance law with large data. J. Differential Equations 198, 233–274 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    P. Baiti, H.K. Jenssen, Well-posedness for a class of \(2\times 2\) conservation laws with \(L^\infty \) data. J. Differential Equations 140, 161–185 (1997)Google Scholar
  4. 4.
    J.P. Boyd, Global Approximations to the Principal Real-Valued Branch of the Lambert W- function. Applied Math Lett. 11, 27–31 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. Bressan, Hyperbolic Systems of Conservation Laws - The one-dimensional Cauchy problem, Oxford Lecture Series in Mathematics and its Applications 20 (Oxford University Press, Oxford, 2000)Google Scholar
  6. 6.
    C.M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38, 33–41 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M. Ersoy, E. Feireisl, E. Zuazua, Sensitivity analysis of 1–d steady forced scalar conservation laws. J. Differential Equations 254, 3817–3834 (2013)Google Scholar
  8. 8.
    L. Gosse, Localization effects and measure terms in numerical schemes for balance laws. Math. Comp. 71, 553–582 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    L. Gosse, Computing Qualitatively Correct Approximations of Balance Laws, vol. 2. (SIMAI Springer Series, Springer, 2013)Google Scholar
  10. 10.
    G. Guerra, Well-posedness for a scalar conservation law with singular nonconservative source. J. Differential Equations 206, 438–469 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    H. Holden, K.H. Karlsen, K.-A. Lie, N.H. Risebro, Splitting Methods for Partial Differential Equations with Rough Solutions (European Mathematical Society (EMS), Zürich, Analysis and MATLAB programs. EMS Series of Lectures in Mathematics, 2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    H. Holden, N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws. Applied Mathematical Sciences, vol. 152. (Springer-Verlag, New York, 2002)Google Scholar
  13. 13.
    K.H. Karlsen, N.H. Risebro, J.D. Towers, Front tracking for scalar balance equations. J. Hyperbolic Differ. Equ. 1, 115–148 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    R.A. Klausen, N.H. Risebro, Stability of conservation laws with discontinuous coefficients. J. Differential Equations 157, 41–60 (1999)Google Scholar
  15. 15.
    C. Klingenberg, N.H. Risebro, Convex conservation laws with discontinuous coefficients. Existence, uniqueness and asymptotic behavior. Comm. Partial Differential Equations 20(11–12), 1959–1990 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S.N. Kružkov, First order quasilinear equations in several independent space variables. Mat. USSR Sbornik 81, 228–255 (1970)Google Scholar
  17. 17.
    W.J. Layton, Error Estimates for Finite Difference Approximations to Hyperbolic Equations for Large Time. Proc. Amer. Math. Soc. 92, 425–431 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    R. Natalini, A. Tesei, Blow-up of solutions for a class of balance laws. Comm. Part. Diff. Eqns. 19, 417–453 (1994)Google Scholar
  19. 19.
    E. Weinan, Homogenization of scalar conservation laws with oscillatory forcing terms. SIAM J. Appl. Math. 52, 959–972 (1992)Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.DISIMUniversità degli Studi dell’AquilaL’AquilaItaly
  2. 2.Istituto per le Applicazioni del CalcoloCNRRomeItaly

Personalised recommendations