Skip to main content

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

  • 453 Accesses

Abstract

In this chapter we introduce the topic of the book, namely the class of partial differential equations on which it is focused and an Outline of the presented material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Arora, P.L. Roe, On postshock oscillations due to capturing schemes in unsteady flows. J. Comput. Phys. 130, 25–40 (1997)

    Google Scholar 

  2. P. Baiti, A. Bressan, H.K. Jenssen, An instability of the Godunov scheme. Commun. Pure Appl. Math. 59, 1604–1638 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Bianchini, \(BV\) solutions of the semidiscrete upwind scheme. Arch. Rational Mech. Anal. 167, 1–81 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-balanced Schemes for Sources. Frontiers in Mathematics Series (Birkhäuser, Basel, 2004). ISBN 3-7643-6665-6

    Google Scholar 

  5. A. Bressan, Hyperbolic Systems of Conservation Laws—The One-Dimensional Cauchy Problem. Oxford Lecture Series in Mathematics and its Applications, vol. 20 (Oxford University Press, Oxford, 2000)

    Google Scholar 

  6. A. Bressan, P. Goatin, Stability of \(L^\infty \) solutions of Temple class systems. Differ. Integral Equ. 13, 1503–1528 (2000)

    MathSciNet  MATH  Google Scholar 

  7. A. Bressan, H.K. Jenssen, On the convergence of Godunov scheme for straight line nonlinear hyperbolic systems. Chin. Ann. Math. (CAM) 21, 269–284 (2000)

    Article  MATH  Google Scholar 

  8. E. Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system. J. Hyperbolic Differ. Equ. 11(2014), 493–519 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves (Springer, New York, 1976)

    Book  MATH  Google Scholar 

  10. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edn. (Springer, Heidelberg, 2010)

    Book  MATH  Google Scholar 

  11. V. Elling, Relative entropy and compressible potential flow. Acta Math. Sci. Ser. B Engl. Ed. 35(4), 763–776 (2015)

    Google Scholar 

  12. V. Elling, The carbuncle phenomenon is incurable. Acta Math. Scientia 29B, 1647–1656 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Glimm, D.H. Sharp, An \(S\)-matrix theory for classical nonlinear physics. Found. Phys. 16, 125–141 (1986)

    Article  MathSciNet  Google Scholar 

  14. S.K. Godunov, , V.S. Ryabenkii, Difference Schemes; An Introduction to the Underlying Theory, Studies in Mathematics and Its Applications 19, North Holland (1987)

    Google Scholar 

  15. J.M. Greenberg, A.Y. LeRoux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33, 1–16 (1996)

    Article  MathSciNet  Google Scholar 

  16. J. Guckenheimer, Shocks and rarefactions in two space dimensions. Arch. Rational Mech. Anal. 59, 281–291 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Holden, K.H. Karlsen, K.-A. Lie, N.H. Risebro, Splitting Methods for Partial Differential Equations with Rough Solutions. Analysis and MATLAB Programs. Series of Lectures in Mathematics (European Mathematical Society (EMS), Zürich, 2010)

    Google Scholar 

  18. L. Huang, T.P. Liu, A conservative, piecewise-steady difference scheme for transonic nozzle flow. Comput. Math. Appl. 12A, 377–388 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. M.Y. Hussaini, A. Kumar, M.D. Salas (eds.), Algorithmic Trends in Computational Fluid Dynamics (English) (Springer, Berlin, 1993)

    Google Scholar 

  20. M.Y. Hussaini, B. van Leer, J. Van Rosendale (eds.), Upwind and High-Resolution Schemes (English) (Springer, Berlin, 1997)

    Google Scholar 

  21. E. Isaacson, B. Temple, Convergence of the \(2 \times 2\) Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55, 625–640 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Jin, J.-G. Liu, The effects of numerical viscosities. I. Slowly moving shocks. J. Comput. Phys. 126, 373–389 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. S.N. Kružkov, First order quasilinear equations with several independent variables. Math. Sbornik (N.S.) 81(123), 228255 (1970)

    MathSciNet  Google Scholar 

  24. R.J. LeVeque, Numerical Methods for Conservation Laws. ETH Zurich (Birkhauser, Basel, 1992)

    Google Scholar 

  25. C. Li, T.P. Liu, Asymptotic states for hyperbolic conservation laws with a moving source. Adv. Appl. Math. 4, 353–379 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Majda, Compressible Flow in Several Space Variables (Springer, New York, 1984)

    Book  MATH  Google Scholar 

  27. J. Rauch, BV estimates fail for most quasilinear hyperbolic systems in dimensions greater than one. Commun. Math. Phys. 106, 481–484 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. N.H. Risebro, A front tracking alternative to the random choice method. Proc. Am. Math. Soc. 117, 1125–1139 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Rizzi, H. Viviand (eds.), Numerical Methods for the Computation of Inviscid Transonic Flows with Shock Waves. Notes on Numerical Fluid Mechanics Series, vol. 3 (Vieweg Verlag, Braunschweig, 1981)

    Google Scholar 

  30. P.L. Roe, Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics. J. Comput. Phys. 63, 458 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. P.L. Roe, Computational fluid dynamics—retrospective and prospective. Int. J. Comput. Fluid Dyn. 19(8), 581–594 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Sjögreen, http://www.math.fsu.edu/~sussman/Bjorn_Sjogreen_Notes.pdf

  33. G.A. Sod, A random choice method with application to reaction-diffusion systems in combustion. Comput. Math. Appl. 11, 129–144 (1985)

    Article  MathSciNet  Google Scholar 

  34. G.A. Sod, A numerical study of oxygen diffusion in a spherical cell with the Michaelis-Menten oxygen uptake kinetics. J. Math. Biol. 24, 279–289 (1986)

    Article  MATH  Google Scholar 

  35. T.D. Taylor, B.S. Masson, Application of the unsteady numerical method of Godunov to computation of supersonic flows past bell shaped bodies. J. Comput. Phys. 5, 443–454 (1970)

    Article  MATH  Google Scholar 

  36. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edn. (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

  37. J. Von Neumann, R.D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232–237 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  38. E. Weinan, Homogenization of scalar conservation laws with oscillatory forcing terms. SIAM J. Appl. Math. 52, 959–972 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Young, On elementary interactions for hyperbolic conservation laws. Unpublished (1993). http://www.math.umass.edu/~young/Research/misc/elem.pdf

  40. Y. Zheng, Systems of Conservation Laws: Two-Dimensional Riemann Problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 38 (Birkhauser Verlag, Boston, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debora Amadori .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Amadori, D., Gosse, L. (2015). Introduction. In: Error Estimates for Well-Balanced Schemes on Simple Balance Laws. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-24785-4_1

Download citation

Publish with us

Policies and ethics