Skip to main content

The Plasma Membrane Ca2+ ATPase and the Na/Ca Exchanger in β-cell Function and Diabetes

  • Chapter
  • First Online:
Book cover Regulation of Ca2+-ATPases,V-ATPases and F-ATPases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 14))

  • 1008 Accesses

Abstract

The rat pancreatic β cell expresses six splice variants of the plasma membrane Ca2+ ATPase (PMCA) and two splice variants of the Na/Ca exchanger 1 (NCX1). In the β cell, Na/Ca exchange displays a high capacity, contributes to both Ca2+ outflow and inflow, and participates to the control of insulin release. Gain-of-function studies show that overexpression of PMCA2 or NCX1 leads to endoplasmic reticulum (ER) Ca2+ depletion with subsequent ER stress, decrease in β-cell proliferation, and β-cell death by apoptosis. Loss-of-function studies show, on the contrary, that heterozygous inactivation of NCX1 (Ncx1+/−) leads to an increase in β-cell function and a fivefold increase in both β-cell mass and proliferation. The mutation also increases β-cell resistance to hypoxia, and Ncx1 +/− islets show a 2–4 times higher rate of diabetes cure than Ncx1+/+ islets when transplanted in diabetic animals. Thus, downregulation of the Na/Ca exchanger leads to various changes in β-cell function that are opposite to the major abnormalities seen in diabetes. Preliminary data indicate that heterozygous inactivation of PMCA2 leads to related though not completely similar results. These provide two unique models for the prevention and treatment of β-cell dysfunction in diabetes and following islet transplantation. In addition, the β-cell includes the mutually exclusive exon B in the alternative splicing region of NCX1, which confers a high sensitivity of its NCX splice variants (NCX1.3 and 1.7) to the inhibitory action of compounds like KBR-7943. Hence, it is possible to develop NCX1 inhibitors acting preferentially on the β-cell to stimulate its proliferation in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carafoli E (1988) Membrane transport of calcium: an overview. Methods Enzymol 157:3–11

    Article  CAS  PubMed  Google Scholar 

  2. Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    CAS  PubMed  Google Scholar 

  3. Carafoli E (1994) Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J 8:993–1002

    CAS  PubMed  Google Scholar 

  4. Kamagate A, Herchuelz A, Bollen A et al (2000) Expression of multiple plasma membrane Ca2+-ATPases in rat pancreatic islet cells. Cell Calcium 27:231–246

    Article  CAS  PubMed  Google Scholar 

  5. Nicoll DA, Longoni S, Philipson KD (1990) Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250:562–565

    Article  CAS  PubMed  Google Scholar 

  6. Hryshko LV, Philipson KD (1997) Sodium-calcium exchange: recent advances. Basic Res Cardiol 92(Suppl 1):45–51

    Article  CAS  PubMed  Google Scholar 

  7. On C, Marshall CR, Chen N et al (2008) Gene structure evolution of the Na+-Ca2+ exchanger (NCX) family. BMC Evol Biol 8:127–142

    Article  PubMed Central  PubMed  Google Scholar 

  8. Van Eylen F, Svoboda M, Herchuelz A (1997) Identification, expression pattern and potential activity of Na/Ca exchanger isoforms in rat pancreatic B-cells. Cell Calcium 21:185–193

    Article  PubMed  Google Scholar 

  9. Van Eylen F, Bollen A, Herchuelz A (2001) NCX1 Na/Ca exchanger splice variants in pancreatic islet cells. J Endocrinol 168:517–526

    Article  PubMed  Google Scholar 

  10. Herchuelz A, Plasman PO (1991) Sodium-calcium exchange in the pancreatic B cell. Ann N Y Acad Sci 639:642–656

    Article  CAS  PubMed  Google Scholar 

  11. Van Eylen F, Lebeau C, Herchuelz A (1998) Contribution of Na/Ca exchange to Ca2+ outflow and entry in the rat pancreatic beta-cell: studies with antisense oligonucleotides. Diabetes 47:1873–1880

    Article  PubMed  Google Scholar 

  12. Van Eylen F, Horta OD, Barez A et al (2002) Overexpression of the Na/Ca exchanger shapes stimulus-induced cytosolic Ca2+ oscillations in insulin-producing BRIN-BD11 cells. Diabetes 51:366–375

    Article  PubMed  Google Scholar 

  13. Kamagate A, Herchuelz A, Van Eylen F (2002) Plasma membrane Ca2+-ATPase overexpression reduces Ca2+ oscillations and increases insulin release induced by glucose in insulin-secreting BRIN-BD11 cells. Diabetes 51:2773–2788

    Article  CAS  PubMed  Google Scholar 

  14. Plasman PO, Lebrun P, Herchuelz A (1990) Characterization of the process of sodium-calcium exchange in pancreatic islet cells. Am J Physiol 259:E844–E850

    CAS  PubMed  Google Scholar 

  15. Gagliardino JJ, Rossi JP (1994) Ca2+-ATPase in pancreatic islets: its possible role in the regulation of insulin secretion. Diabetes Metab Rev 10:1–17

    Article  CAS  PubMed  Google Scholar 

  16. Ximenes HM, Kamagate A, Van Eylen F et al (2003) Opposite effects of glucose on plasma membrane Ca2+-ATPase and Na/Ca exchanger transcription, expression, and activity in rat pancreatic beta-cells. J Biol Chem 278:22956–22963

    Article  CAS  PubMed  Google Scholar 

  17. Eizirik DL, Mandrup-Poulsen T (2001) A choice of death – the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44:2115–2133

    Article  CAS  PubMed  Google Scholar 

  18. Utzschneider KM, Kahn SE (2003) In International Textbook of Diabetes Mellitus: DeFronzo RA, Ferrannini E, Keen H, Zimmet P (eds) β-cell dysfunction in type 2 diabetes. Hoboken, NJ: John Wiley & Sons. 375–388

    Google Scholar 

  19. Porte D Jr (1991) Banting lecture 1990. Beta-cells in type II diabetes mellitus. Diabetes 40:66–180

    Article  Google Scholar 

  20. Kahn SE, Zraika S, Utzschneider KM et al (2009) The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality. Diabetologia 52:1003–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Maclean N, Ogilvie RF (1955) Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabetes 4:367–376

    Article  CAS  PubMed  Google Scholar 

  22. Rahier J, Guiot Y, Goebbels RM et al (2008) Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 10(Suppl 4):32–42

    Article  PubMed  Google Scholar 

  23. Cnop M, Welsh N, Jonas JC et al (2005) Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–S107

    Article  CAS  PubMed  Google Scholar 

  24. Diaz-Horta O, Kamagate A, Herchuelz A et al (2002) Na/Ca exchanger overexpression induces endoplasmic reticulum-related apoptosis and caspase-12 activation in insulin-releasing BRIN-BD11 cells. Diabetes 51:1815–1824

    Article  CAS  PubMed  Google Scholar 

  25. Cardozo AK, Heimberg H, Heremans Y et al (2001) A comprehensive analysis of cytokine-induced and nuclear factor-kappa B-dependent genes in primary rat pancreatic beta-cells. J Biol Chem 276:48879–48886

    Article  CAS  PubMed  Google Scholar 

  26. Kutlu B, Cardozo AK, Darville MI (2003) Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells. Diabetes 52:2701–2719

    Article  CAS  PubMed  Google Scholar 

  27. Cardozo AK, Kruhoffer M, Leeman R et al (2001) Identification of novel cytokine-induced genes in pancreatic beta-cells by high-density oligonucleotide arrays. Diabetes 50:909–920

    Article  CAS  PubMed  Google Scholar 

  28. Cardozo AK, Ortis F, Storling J et al (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 54:452–461

    Article  CAS  PubMed  Google Scholar 

  29. Cnop M, Hannaert JC, Hoorens A et al (2001) Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes 50:1771–1777

    Article  CAS  PubMed  Google Scholar 

  30. Maedler K, Spinas GA, Dyntar D et al (2001) Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes 50:69–76

    Article  CAS  PubMed  Google Scholar 

  31. Butler AE, Janson J, Bonner-Weir S et al (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    Article  CAS  PubMed  Google Scholar 

  32. El-Assaad W, Buteau J, Peyot ML et al (2003) Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology 144:4154–4163

    Article  CAS  PubMed  Google Scholar 

  33. Cunha DA, Hekerman P, Ladriere L et al (2008) Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J Cell Sci 121:2308–2318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Jiang L, Allagnat F, Nguidjoe E et al (2010) Plasma membrane Ca2+-ATPase overexpression depletes both mitochondrial and endoplasmic reticulum Ca2+ stores and triggers apoptosis in insulin-secreting BRIN-BD11 cells. J Biol Chem 285:30634–30643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Nguidjoe E, Sokolow S, Bigabwa S et al (2011) Heterozygous inactivation of the Na/Ca Exchanger increases glucose-induced insulin release, beta-cell proliferation, and mass. Diabetes 60:2076–2085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  PubMed  Google Scholar 

  37. Emamaulee JA, Shapiro AM (2006) Perpectives in diabetes. Interventional strategies to prevent β-cell apoptosis in islet transplantation. Diabetes 55:1907–1914

    Article  Google Scholar 

  38. Hamming KS, Soliman D, Webster NJ et al (2010) Inhibition of beta-cell sodium-calcium exchange enhances glucose-dependent elevations in cytoplasmic calcium and insulin secretion. Diabetes 59:1686–1693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank A. Van Praet, A. Iabkriman, and M-P. Berghmans (Laboratory of Pharmacology; ULB) for excellent technical support. This work has been supported by grants from the Belgian Fund for Scientific Research (FRSM 3.4593.04, 3.4527.08), the EFSD/Novo Nordisk Programme in Diabetes Research (2005/6), and JDRF (award 17-2011-650, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Herchuelz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herchuelz, A., Pachera, N. (2016). The Plasma Membrane Ca2+ ATPase and the Na/Ca Exchanger in β-cell Function and Diabetes. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Advances in Biochemistry in Health and Disease, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-24780-9_6

Download citation

Publish with us

Policies and ethics