Skip to main content

The Yeast Ca2+-ATPases and Ca2+/H+ Exchangers of the Secretory Pathway and Their Regulation

  • Chapter
  • First Online:
Regulation of Ca2+-ATPases,V-ATPases and F-ATPases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 14))

  • 1032 Accesses

Abstract

We propose a new model for yeast Ca2+ homeostasis that considers the roles of different Ca2+/H+ exchangers and Ca2+-ATPases which function in all secretory organelles. Majority of these Ca2+-ATPases are blocked by cyclopiazonic acid and thapsigargin in a similar fashion as SERCA. The exchangers and Ca2+-ATPases are activated ~7- and ~2-fold by extracellular glucose and contribute ~80 % and 20 %, respectively, to Ca2+ efflux from the cytosol. Vacuoles do not represent major storage organelles, contributing 20–35 % in Ca2+ uptake (an efflux from the cytosol). VCX1 and PMC1 and their respective vacuolar transporters positively regulate both types of transporters from all secretory organelles, whereas PMR1 and Pmr1p negatively regulate Ca2+ pumps from the ER and NE. Calcineurin is a positive regulator of Ca2+-ATPases and the exchangers from secretory organelles, whose capacity is modulated depending on the energy supply. Calcineurin activates Ca2+-ATPases and the exchangers under normal growth conditions and under high Ca2+ stress in the absence of glucose. Glucose and high Ca2+ together additively stimulate Ca2+-ATPases, whereas Ca2+/H+ exchangers demonstrate higher activity than that observed under Ca2+ stress in the absence of glucose but lower activity than that observed with glucose alone. Modulation of the exchanger activities under Ca2+ stress correlates with that of V H+-ATPase, suggesting indirect regulation of the exchangers by calcineurin via regulation of this H+ pump. The presence of Ca2+-ATPases and exchangers in all secretory organelles is discussed from the point of view of local and specific Ca2+ signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  2. Cunningham KW, Fink GR (1994) Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol 124:351–363

    Article  CAS  PubMed  Google Scholar 

  3. Rudolph HK, Antebi A, Fink GR et al (1989) The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ ATPase family. Cell 58:133–145

    Article  CAS  PubMed  Google Scholar 

  4. Antebi A, Fink GR (1992) The yeast Ca2+-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol Biol Cell 3:633–654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Okorokov LA, Tanner W, Lehle L (1993) A novel primary Ca2+-transport system from Saccharomyces cerevisiae. Eur J Biochem 216:573–577

    Article  CAS  PubMed  Google Scholar 

  6. Okorokov LA, Lehle, L (1995) The PMR1 gene encodes a Ca2+-ATPase which services Golgi and Golgi-related compartments in yeast: biochemical evidence. In: Proceedings 10th International Workshop on Plant Membrane Biology. Regensburg, 10: 54

    Google Scholar 

  7. Sorin A, Rosas G, Rao R (1997) PMR1, a Ca2 + -ATPase in yeast Golgi, has properties distinct from sarco/endoplasmic reticulum and plasma membrane calcium pumps. J Biol Chem 272:9895–9901

    Article  CAS  PubMed  Google Scholar 

  8. Cunningham KW, Fink GR (1996) Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+-ATPases in Saccharomyces cerevisiae. Mol Cell Biol 16:2226–2237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Pozos TC, Sekler I, Cyert MS (1996) The product of HUM1, a novel yeast gene, is required for vacuolar Ca2+/H+ exchange and is related to mammalian Na+/Ca2+ exchangers. Mol Cell Biol 16:3730–3741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Cunningham KW (2011) Acidic calcium stores of Saccharomyces cerevisiae. Cell Calcium 50:129–138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Pittman JK (2011) Vacuolar Ca2+ uptake. Cell Calcium 50:139–146

    Article  CAS  PubMed  Google Scholar 

  12. Ohsumi Y, Anraku Y (1983) Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J Biol Chem 258:5614–5617

    CAS  PubMed  Google Scholar 

  13. Okorokov LA, Kulakovskayaya TV, Lichko LP et al (1985) H+/ion antiport as the principal mechanism of transport systems in the vacuolar membrane of the yeast Saccharomyces carlsbergensis. FEBS Lett 192:303–306

    Article  CAS  PubMed  Google Scholar 

  14. Okorokov LA, Lichko LP, Kulakovskayaya TV (1985) Biochemistry and function of vacuolar adenosine triphosphatase in fungi and plants. Springer, Berlin, pp 203–212

    Book  Google Scholar 

  15. Kulakovskaya TV, Matys SV, Okorokov LA (1991) Transport of organic acid anions and guanosine into vacuoles of Saccharomyces pastorianus. Yeast 7:495–501

    Article  CAS  Google Scholar 

  16. Marchi V, Sorin A, Wei Y, Rao R (1999) Induction of vacuolar Ca2 + -ATPase and H+/Ca2+ exchange activity in yeast mutants lacking Pmr1, the Golgi Ca2 + - ATPase. FEBS Lett 454:181–186

    Article  CAS  PubMed  Google Scholar 

  17. Okorokov LA, Kuranov AJ, Kuranova EV et al (1997) Ca2+ transporting ATPase(s) of the reticulum type in intracellular membranes of Saccharomyces cerevisiae: biochemical identification. FEMS Microbiol Lett 146:39–46

    Article  CAS  PubMed  Google Scholar 

  18. Okorokov LA, Lehle L (1998) Ca2+-ATPases of Saccharomyces cerevisiae: diversity and possible role in protein sorting. FEMS Microbiol Lett 162:83–91

    Article  CAS  PubMed  Google Scholar 

  19. Gentzsch M, Tanner W (1997) Protein-O-glycosylation in yeast: protein-specific mannosyl transferases. Glycobiol 7:481–486

    Article  CAS  Google Scholar 

  20. Okorokov L (1995) Various compartments of the protein secretory pathway of yeast possess Ca2+/H+ antiporter (s) and V1V0 H+ - ATPase(s). In: Proceedings of 10th International Workshop on Plant Membrane Biology. Regensburg 10: 56

    Google Scholar 

  21. Okorokov LA, Prasad R, Zviagilskaia RA et al (1996) Manual on membrane lipids, 16th edn. Springer, Heidelberg, pp 16–36

    Book  Google Scholar 

  22. Okorokov LA (1997) Diversity of Ca2+ transporters and Ca2+ store compartments in yeast: possible role in protein targeting and in signal transduction. Folia Microbiol 42:244–245

    Article  CAS  Google Scholar 

  23. Okorokov LA (1994) Several compartments of Saccharomyces cerevisiae are equipped with Ca2+-ATPase(s). FEMS Microbiol Lett 117:311–318

    Article  CAS  PubMed  Google Scholar 

  24. Okorokov LA, Silva FE, Okorokova-Façanha AL (2001) Ca2+ and H+ homeostasis in fission yeast: a role of Ca2+/H+ exchange and distinct V-H+-ATPases of the secretory pathway organelles. FEBS Lett 505:321–324

    Article  CAS  PubMed  Google Scholar 

  25. Ribeiro CC, Silva FE, Okorokova-Façanha AL, Okorokov LA (submitted) Ca2+ homeostasis in the yeast Saccharomyces cerevisiae: new insights

    Google Scholar 

  26. Lytton J, Westlin M, Burk SE et al (1992) Functional comparison between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 267:14483–14489

    CAS  PubMed  Google Scholar 

  27. Samarão SS, Teodoro CES, Silva FE, Ribeiro CC et al (2008) V H+-ATPase along the yeast secretory pathway: energization of the ER and Golgi membranes. Biochim Biophys Acta 1788:303–313

    Article  PubMed  Google Scholar 

  28. Strayle J, Pozzan T, Rudolph H (1999) Steady-state free Ca2+ in the yeast endoplasmic reticulum reaches only 10 μM and is mainly controlled by the secretory pathway pump Pmr1. EMBO J 18:4733–4743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wang X, Qian X, Stumpf B et al (2013) Modulatory ATP binding to the E2 state of maize plasma membrane H+-ATPase indicated by the kinetics of vanadate inhibition. FEBS J 280:4793–4806

    Article  CAS  PubMed  Google Scholar 

  30. Corradi GR, Pinto FT, Mazzitelli LR, Adamo HP (2012) Shadows of an absent partner: ATP hydrolysis and phosphoenzyme turnover of the Spf1 (Sensitivity to Pichia farinosa killer toxin). J Biol Chem 287:30477–30484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lustoza ACDM, Palma LM, Façanha AR et al (2011) P5A-type ATPase Cta4p is essential for Ca2+ transport in the endoplasmic reticulum of Schizosaccharomyces pombe. PLoS ONE 6:e27843. doi:10.1371/journal.pone.0027843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bowman BJ, Draskovic M, Freita M et al (2009) Structure and distribution of organelles and cellular location of calcium transporters in Neurospora crassa. Eukaryot Cell 8:1845–1855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Adamicova L, Straube A, Schuz I, Steinberg G (2004) Calcium signaling is involved in dynein-dependent microtubule organization. Mol Biol Cell 15:1969–1980

    Article  Google Scholar 

  34. Seidler NW, Jona I, Vegh M, Martonosi A (1989) Cyclopiazonic acid is a specific inhibitor of the Ca2 + -ATPase of sarcoplasmic reticulum. J Biol Chem 264:17816–17823

    CAS  PubMed  Google Scholar 

  35. Dunn T, Gable K, Beeler T (1994) Regulation of cellular Ca2+ by yeast vacuoles. J Biol Chem 269:7273–7278

    CAS  PubMed  Google Scholar 

  36. Nguyen T, Chin WC, Verdugo P (1998) Role of Ca2+/K+ ion exchange in intracellular storage and release of Ca2+. Nature 395:908–912

    Article  CAS  PubMed  Google Scholar 

  37. Okorokov L, Lichko LP, Kulaev IS (1980) Vacuoles: main compartments of potassium, magnesium and phosphate ions in Saccharomyces carlsbergensis cells. J Bacteriol 144:661–665

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Lichko LP, Okorokov L, Kulaev IS (1980) Role of vacuolar ion pool in Saccharomyces carlsbergensis: potassium efflux from vacuoles is coupled with manganese or magnesium influx. J Bacteriol 144:666–671

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Lichko LP, Okorokov L, Kulaev IS (1982) Participation of vacuoles in regulation of levels of K+, Mg2+ and orthophosphate ions in cytoplasm of the yeast Saccharomyces. Arch Microbiol 132:289–293

    Article  CAS  Google Scholar 

  40. Suzuki C, Shimma Y (1999) P-type ATPase spf1 mutants show a novel resistance mechanism for the killer toxin SMKT. Mol Microbiol 32:813–823

    Article  CAS  PubMed  Google Scholar 

  41. Cronin SR, Rao R, Hampton RY (2002) Cod1p/Spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis. J Cell Biol 57:1017–1028

    Article  Google Scholar 

  42. Miseta A, Kellermayer R, Aiello DP et al (1999) The vacuolar Ca2+/H+ exchanger Vcx1p/Hum1p tightly controls cytosolic Ca2+ levels in S. cerevisiae. FEBS Lett 451:132–136

    Article  CAS  PubMed  Google Scholar 

  43. Silva FE, Ribeiro CC, Palma LM et al. (in preparation) VCX1, PMC1 and their products positively control Ca2+/H+ exchangers and Ca2+-ATPases of the yeast secretory pathway

    Google Scholar 

  44. Eilam Y, Lavy H, Grossowicz N (1985) Cytoplasmic Ca2+ homeostasis maintained by a vacuolar Ca2+ transport system in the yeast Saccharomyces cerevisiae. J Gen Microbiol 131:623–629

    CAS  Google Scholar 

  45. Almeida AJC, Benchimol M, Souza W, Okorokov L (2003) Ca2+ sequestering in the early-branching amitochondriate protozoan Tritrichomonas foetus: an important role of the Golgi complex and its Ca2+-ATPase. Biochim Biophys Acta 1615:60–68

    Article  CAS  PubMed  Google Scholar 

  46. Belde PJM, Vossen JH, Borst-Pauwels GWFH, Theuvenet APR (1993) Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of Saccharomyces cerevisiae. FEBS Lett 323:113–118

    Article  CAS  PubMed  Google Scholar 

  47. Ribeiro CC, Bernardes NR, Silva FE et al. (2007) Regulation of V H+-ATPases and Ca2+ transporters by extracellular glucose. In: 25th small meeting on yeast transport and energetics, SMYTE 25, Arraial d’Ájuda, Bahia, Brasil, 25:29

  48. Silva FE, Ribeiro CC, Okorokova-Façanha AL, Okorokov LA (in preparation). Regulation of the yeast Ca2+ transporters in response to high extracellular Ca2+ under different energy supply conditions

    Google Scholar 

  49. Berridge MJ (2006) Calcium microdomains: organization and function. Cell Calcium 40:405–412

    Article  CAS  PubMed  Google Scholar 

  50. Ribeiro CC, Monteiro RM, Freitas FP et al (2012) Extracellular glucose increases the coupling capacity of the yeast V H+-ATPase and the resistance of its H+ transport activity to nitrate inhibition. PLoS ONE 7:e49580. doi:10.1371/journal.pone.0049580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The different parts of this work were supported by the former Academy of Science of USSR, DFG (Deutsche Forschungsgemeinschaft, Germany), CNPq (Conselho Nacional de Pesquisa e Desenvolvimento), and FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro). I thank Drs. L. Lehle, W. Tanner, H. K. Rudolph, and K. Cunningham for kindly providing yeast strains and Dr. M. Gentzsch for the determination of the protein mannosyltransferase activity. I am grateful to my former and actual colleagues and students in Russia, Germany, and Brazil, who have contributed to our collective attempts to better understand the exciting construction of the yeast Ca2+ homeostasis created by nature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev A. Okorokov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Okorokov, L.A. (2016). The Yeast Ca2+-ATPases and Ca2+/H+ Exchangers of the Secretory Pathway and Their Regulation. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Advances in Biochemistry in Health and Disease, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-24780-9_27

Download citation

Publish with us

Policies and ethics