Skip to main content

Renal H+-ATPase Function, Regulation, and Role in Distal Renal Tubular Acidosis

  • Chapter
  • First Online:
Regulation of Ca2+-ATPases,V-ATPases and F-ATPases

Abstract

The kidney plays an important role in systemic acid–base balance by maintaining the blood HCO3 concentration within narrow limits. Various H+/base transport processes and metabolic pathways have evolved that orchestrate in a coordinated fashion, the absorption of the filtered bicarbonate load and the generation of new HCO3 . The impairment of either of these processes in the nephron can result in a decrease in the blood HCO3 concentration with concomitant metabolic acidosis. In the renal proximal tubule and the collecting duct, secretion of protons by the vacuolar H+-ATPase is one of the key transport steps involved in both the reclamation of filtered HCO3 and the generation of new HCO3 . The activity of the vacuolar H+-ATPase is dynamically regulated by various local and systemic factors. Naturally occurring mutations in specific subunits of the vacuolar H+-ATPase cause the disease distal renal tubular acidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurtz I, Maher T, Hulter HN et al (1983) Effect of diet on plasma acid–base composition in normal humans. Kidney Int 24:670–680

    Article  CAS  PubMed  Google Scholar 

  2. Halperin ML, Kamel KS (1990) Ammonium metabolism: emphasis on energy considerations. Miner Electrolyte Metab 16:277–282

    CAS  PubMed  Google Scholar 

  3. Kurtz I, Dass PD, Cramer S (1990) The importance of renal ammonia metabolism to whole body acid–base balance: a reanalysis of the pathophysiology of renal tubular acidosis. Miner Electrolyte Metab 16:331–340

    CAS  PubMed  Google Scholar 

  4. Relman AS, Lennon EJ, Lemann J Jr (1961) Endogenous production of fixed acid and the measurement of the net balance of acid in normal subjects. J Clin Invest 40:1621–1630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bank N, Aynedjian HS, Mutz BF (1989) Proximal bicarbonate absorption independent of Na+-H+ exchange: effect of bicarbonate load. Am J Physiol 256:F577–F582

    CAS  PubMed  Google Scholar 

  6. Kurtz I (2014) Molecular mechanisms and regulation of urinary acidification. Compr Physiol 4:1737–1774

    Google Scholar 

  7. Breton S, Brown D (2013) Regulation of luminal acidification by the V-ATPase. Physiology (Bethesda) 28:318–329

    CAS  Google Scholar 

  8. Cipriano DJ, Wang Y, Bond S et al (2008) Structure and regulation of the vacuolar ATPases. Biochim Biophys Acta 1777:599–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929

    Article  CAS  PubMed  Google Scholar 

  10. Wagner CA, Finberg KE, Breton S et al (2004) Renal vacuolar H+-ATPase. Physiol Rev 84:1263–1314

    Article  CAS  PubMed  Google Scholar 

  11. Yan Y, Denef N, Schupbach T (2009) The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila. Dev Cell 17:387–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hosokawa H, Dip PV, Merkulova M et al (2013) The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2. J Biol Chem 288:5896–5913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Cruciat CM, Ohkawara B, Acebron SP et al (2010) Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 327:459–463

    Article  CAS  PubMed  Google Scholar 

  14. Diakov TT, Kane PM (2010) Regulation of vacuolar proton-translocating ATPase activity and assembly by extracellular pH. J Biol Chem 285:23771–23778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kane PM (1995) Disassembly and reassembly of the yeast vacuolar H+-ATPase in vivo. J Biol Chem 270:17025–17032

    CAS  PubMed  Google Scholar 

  16. Kane PM (2012) Targeting reversible disassembly as a mechanism of controlling V-ATPase activity. Curr Protein Pept Sci 13:117–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Moriyama Y, Nelson N (1989) Cold inactivation of vacuolar proton-ATPases. J Biol Chem 264:3577–3582

    CAS  PubMed  Google Scholar 

  18. Voss M, Schmidt R, Walz B et al (2009) Stimulus-induced translocation of the protein kinase A catalytic subunit to the apical membrane in blowfly salivary glands. Cell Tissue Res 335:657–662

    Article  CAS  PubMed  Google Scholar 

  19. Brown D, Paunescu TG, Breton S et al (2009) Regulation of the V-ATPase in kidney epithelial cells: dual role in acid–base homeostasis and vesicle trafficking. J Exp Biol 212:1762–1772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Madsen KM, Tisher CC (1984) Response of intercalated cells of rat outer medullary collecting duct to chronic metabolic acidosis. Lab Invest 51:268–276

    CAS  PubMed  Google Scholar 

  21. Chen SH, Bubb MR, Yarmola EG et al (2004) Vacuolar H+-ATPase binding to microfilaments: regulation in response to phosphatidylinositol 3-kinase activity and detailed characterization of the actin-binding site in subunit B. J Biol Chem 279:7988–7998

    Article  CAS  PubMed  Google Scholar 

  22. Holliday LS, Lu M, Lee BS et al (2000) The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J Biol Chem 275:32331–32337

    Article  CAS  PubMed  Google Scholar 

  23. Vitavska O, Wieczorek H, Merzendorfer H (2003) A novel role for subunit C in mediating binding of the H+-V-ATPase to the actin cytoskeleton. J Biol Chem 278:18499–18505

    Article  CAS  PubMed  Google Scholar 

  24. Shum WW, Da Silva N, Belleannee C et al (2011) Regulation of V-ATPase recycling via a RhoA- and ROCKII-dependent pathway in epididymal clear cells. Am J Physiol Cell Physiol 301:C31–C43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Banerjee A, Shih T, Alexander EA et al (1999) SNARE proteins regulate H+-ATPase redistribution to the apical membrane in rat renal inner medullary collecting duct cells. J Biol Chem 274:26518–26522

    Article  CAS  PubMed  Google Scholar 

  26. Merkulova M, Bakulina A, Thaker YR et al (2010) Specific motifs of the V-ATPase a2-subunit isoform interact with catalytic and regulatory domains of ARNO. Biochim Biophys Acta 1797:1398–1409

    Article  CAS  PubMed  Google Scholar 

  27. Brown D, Breton S, Ausiello DA et al (2009) Sensing, signaling and sorting events in kidney epithelial cell physiology. Traffic 10:275–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Bernstein H, Atherton LJ, Deen WM (1986) Axial heterogeneity and filtered-load dependence of proximal bicarbonate reabsorption. Biophys J 50:239–252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Liu FY, Cogan MG (1984) Axial heterogeneity in the rat proximal convoluted tubule. I. Bicarbonate, chloride, and water transport. Am J Physiol 247:F816–F821

    CAS  PubMed  Google Scholar 

  30. Liu FY (1987) Cogan MG (1987) Kinetics of bicarbonate transport in the early proximal convoluted tubule. Am J Physiol 253:F912–F916

    CAS  PubMed  Google Scholar 

  31. Kurtz I (2014) NBCe1 as a model carrier for understanding the structure-function properties of Na+ -coupled SLC4 transporters in health and disease. Pflugers Arch 466(8):1501–1516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Brown D, Hirsch S, Gluck S (1988) Localization of a proton-pumping ATPase in rat kidney. J Clin Invest 82:2114–2126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Choi JY, Shah M, Lee MG et al (2000) Novel amiloride-sensitive sodium-dependent proton secretion in the mouse proximal convoluted tubule. J Clin Invest 105:1141–1146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wang T, Yang CL, Abbiati T et al (2001) Essential role of NHE3 in facilitating formate-dependent NaCl absorption in the proximal tubule. Am J Physiol Renal Physiol 281:F288–F292

    CAS  PubMed  Google Scholar 

  35. Hennings JC, Picard N, Huebner AK et al (2012) A mouse model for distal renal tubular acidosis reveals a previously unrecognized role of the V-ATPase a4 subunit in the proximal tubule. EMBO Mol Med 4:1057–1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kurtz I (1987) Apical Na+/H+ antiporter and glycolysis-dependent H+-ATPase regulate intracellular pH in the rabbit S3 proximal tubule. J Clin Invest 80:928–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zimolo Z, Montrose MH, Murer H (1992) H+ extrusion by an apical vacuolar-type H+-ATPase in rat renal proximal tubules. J Membr Biol 126:19–26

    Article  CAS  PubMed  Google Scholar 

  38. Carraro-Lacroix LR, Lessa LM, Bezerra CN et al (2010) Role of CFTR and ClC-5 in modulating vacuolar H+-ATPase activity in kidney proximal tubule. Cell Physiol Biochem 26:563–576

    Article  CAS  PubMed  Google Scholar 

  39. Malnic G, Geibel JP (2000) Cell pH and H+ secretion by S3 segment of mammalian kidney: role of H+-ATPase and Cl. J Membr Biol 178:115–125

    Article  CAS  PubMed  Google Scholar 

  40. Koeppen BM (1985) Conductive properties of the rabbit outer medullary collecting duct: inner stripe. Am J Physiol 248:F500–F506

    CAS  PubMed  Google Scholar 

  41. Koeppen BM (1986) Conductive properties of the rabbit outer medullary collecting duct: outer stripe. Am J Physiol 250:F70–F76

    CAS  PubMed  Google Scholar 

  42. Sakamoto H, Sado Y, Naito I et al (1999) Cellular and subcellular immunolocalization of ClC-5 channel in mouse kidney: colocalization with H+-ATPase. Am J Physiol 277:F957–F965

    CAS  PubMed  Google Scholar 

  43. Al-Bataineh MM, Gong F, Marciszyn A et al (2014) Regulation of the proximal tubule vacuolar H + -ATPase by PKA and AMP-activated protein kinase. Am J Physiol Renal Physiol 306(9):F981–F995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Gong F, Alzamora R, Smolak C et al (2010) Vacuolar H+-ATPase apical accumulation in kidney intercalated cells is regulated by PKA and AMP-activated protein kinase. Am J Physiol Renal Physiol 298:F1162–F1169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Paunescu TG, Ljubojevic M, Russo LM et al (2010) cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells. Am J Physiol Renal Physiol 298:F643–F654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. O’Neil RG, Hayhurst RA (1985) Functional differentiation of cell types of cortical collecting duct. Am J Physiol 248:F449–F453

    PubMed  Google Scholar 

  47. Madsen KM, Tisher CC (1986) Structural-functional relationships along the distal nephron. Am J Physiol 250:F1–F15

    CAS  Google Scholar 

  48. Verlander JW, Madsen KM, Tisher CC (1987) Effect of acute respiratory acidosis on two populations of intercalated cells in rat cortical collecting duct. Am J Physiol 253:F1142–F1156

    CAS  PubMed  Google Scholar 

  49. Verlander JW, Madsen KM, Tisher CC (1991) Structural and functional features of proton and bicarbonate transport in the rat collecting duct. Semin Nephrol 11:465–477

    CAS  PubMed  Google Scholar 

  50. Alper SL, Natale J, Gluck S et al (1989) Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci U S A 86:5429–5433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Brown D, Hirsch S, Gluck S (1988) An H+-ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature 331:622–624

    Article  CAS  PubMed  Google Scholar 

  52. Kim YH, Kwon TH, Frische S et al (2002) Immunocytochemical localization of pendrin in intercalated cell subtypes in rat and mouse kidney. Am J Physiol Renal Physiol 283:F744–F754

    Article  PubMed  Google Scholar 

  53. Milton AE, Weiner ID (1997) Intracellular pH regulation in the rabbit cortical collecting duct A-type intercalated cell. Am J Physiol 273:F340–F347

    CAS  PubMed  Google Scholar 

  54. Milton AE, Weiner ID (1998) Regulation of B-type intercalated cell apical anion exchange activity by CO2/HCO3. Am J Physiol 274:F1086–F1094

    CAS  PubMed  Google Scholar 

  55. Verlander JW, Madsen KM, Low PS et al (1988) Immunocytochemical localization of band 3 protein in the rat collecting duct. Am J Physiol 255:F115–F125

    CAS  PubMed  Google Scholar 

  56. Emmons C, Kurtz I (1994) Functional characterization of three intercalated cell subtypes in the rabbit outer cortical collecting duct. J Clin Invest 93:417–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Weiner ID, Weill AE, New AR (1994) Distribution of Cl/HCO3 exchange and intercalated cells in rabbit cortical collecting duct. Am J Physiol 267:F952–F964

    CAS  PubMed  Google Scholar 

  58. Kim J, Kim YH, Cha JH et al (1999) Intercalated cell subtypes in connecting tubule and cortical collecting duct of rat and mouse. J Am Soc Nephrol 10:1–12

    CAS  PubMed  Google Scholar 

  59. Madsen KM, Verlander JW, Kim J et al (1991) Morphological adaptation of the collecting duct to acid–base disturbances. Kidney Int Suppl 33:S57–S63

    CAS  PubMed  Google Scholar 

  60. Schuster VL, Fejes-Toth G, Naray-Fejes-Toth A et al (1991) Colocalization of H+-ATPase and band 3 anion exchanger in rabbit collecting duct intercalated cells. Am J Physiol 260:F506–F517

    CAS  PubMed  Google Scholar 

  61. Wall SM, Sands JM, Flessner MF et al (1990) Net acid transport by isolated perfused inner medullary collecting ducts. Am J Physiol 258:F75–F84

    CAS  PubMed  Google Scholar 

  62. Wall SM, Truong AV, DuBose TD Jr (1996) H+-K+-ATPase mediates net acid secretion in rat terminal inner medullary collecting duct. Am J Physiol 271:F1037–F1044

    CAS  PubMed  Google Scholar 

  63. Ishibashi K, Sasaki S, Yoshiyama N et al (1987) Generation of pH gradient across the rabbit collecting duct segments perfused in vitro. Kidney Int 31:930–936

    Article  CAS  PubMed  Google Scholar 

  64. Schwartz GJ, Al-Awqati Q (1985) Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J Clin Invest 75:1638–1644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Paunescu TG, Da Silva N, Russo LM et al (2008) Association of soluble adenylyl cyclase with the V-ATPase in renal epithelial cells. Am J Physiol Renal Physiol 294:F130–F138

    Article  CAS  PubMed  Google Scholar 

  66. Pastor-Soler N, Beaulieu V, Litvin TN et al (2003) Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J Biol Chem 278:49523–49529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Pastor-Soler NM, Hallows KR, Smolak C et al (2008) Alkaline pH- and cAMP-induced V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cells. Am J Physiol Cell Physiol 294:C488–C494

    Article  CAS  PubMed  Google Scholar 

  68. Alzamora R, Thali RF, Gong F et al (2010) PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the a subunit in kidney cells. J Biol Chem 285:24676–24685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Hallows KR, Alzamora R, Li H et al (2009) AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells. Am J Physiol Cell Physiol 296:C672–C681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Hays SR, Baum M, Kokko JP (1987) Effects of protein kinase C activation on sodium, potassium, chloride, and total CO2 transport in the rabbit cortical collecting tubule. J Clin Invest 80:1561–1570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Koeppen BM, Helman SI (1982) Acidification of luminal fluid by the rabbit cortical collecting tubule perfused in vitro. Am J Physiol 242:F521–F531

    CAS  PubMed  Google Scholar 

  72. Laski ME, Kurtzman NA (1983) Characterization of acidification in the cortical and medullary collecting tubule of the rabbit. J Clin Invest 72:2050–2059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Koeppen BM (1987) Electrophysiological identification of principal and intercalated cells in the rabbit outer medullary collecting duct. Pflugers Arch 409:138–141

    Article  CAS  PubMed  Google Scholar 

  74. O’Neil RG, Sansom SC (1984) Characterization of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrode techniques. Am J Physiol 247:F14–F24

    PubMed  Google Scholar 

  75. Barone S, Amlal H, Kujala M et al (2007) Regulation of the basolateral chloride/base exchangers AE1 and SLC26A7 in the kidney collecting duct in potassium depletion. Nephrol Dial Transplant 22:3462–3470

    Article  CAS  PubMed  Google Scholar 

  76. Stetson DL, Wade JB, Giebisch G (1980) Morphologic alterations in the rat medullary collecting duct following potassium depletion. Kidney Int 17:45–56

    Article  CAS  PubMed  Google Scholar 

  77. Doucet A, Marsy S (1987) Characterization of K-ATPase activity in distal nephron: stimulation by potassium depletion. Am J Physiol 253:F418–F423

    CAS  PubMed  Google Scholar 

  78. Renkema KY, Velic A, Dijkman HB et al (2009) The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J Am Soc Nephrol 20:1705–1713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Advani A, Kelly DJ, Cox AJ et al (2009) The (Pro)renin receptor: site-specific and functional linkage to the vacuolar H+-ATPase in the kidney. Hypertension 54:261–269

    Article  CAS  PubMed  Google Scholar 

  80. Ludwig J, Kerscher S, Brandt U et al (1998) Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules. J Biol Chem 273:10939–10947

    Article  CAS  PubMed  Google Scholar 

  81. Rothenberger F, Velic A, Stehberger PA et al (2007) Angiotensin II stimulates vacuolar H+ -ATPase activity in renal acid-secretory intercalated cells from the outer medullary collecting duct. J Am Soc Nephrol 18:2085–2093

    Article  CAS  PubMed  Google Scholar 

  82. Lu X, Garrelds IM, Wagner CA et al (2013) (Pro)renin receptor is required for prorenin-dependent and -independent regulation of vacuolar H+-ATPase activity in MDCK.C11 collecting duct cells. Am J Physiol Renal Physiol 305:F417–F425

    Article  CAS  PubMed  Google Scholar 

  83. Weiner ID, New AR, Milton AE et al (1995) Regulation of luminal alkalinization and acidification in the cortical collecting duct by angiotensin II. Am J Physiol 269:F730–F738

    CAS  PubMed  Google Scholar 

  84. Wagner CA, Mohebbi N, Uhlig U et al (2011) Angiotensin II stimulates H+-ATPase activity in intercalated cells from isolated mouse connecting tubules and cortical collecting ducts. Cell Physiol Biochem 28:513–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Wang T, Giebisch G (1996) Effects of angiotensin II on electrolyte transport in the early and late distal tubule in rat kidney. Am J Physiol 271:F143–F149

    CAS  PubMed  Google Scholar 

  86. Pech V, Kim YH, Weinstein AM et al (2007) Angiotensin II increases chloride absorption in the cortical collecting duct in mice through a pendrin-dependent mechanism. Am J Physiol Renal Physiol 292:F914–F920

    Article  CAS  PubMed  Google Scholar 

  87. Pech V, Zheng W, Pham TD et al (2008) Angiotensin II activates H+-ATPase in type A intercalated cells. J Am Soc Nephrol 19:84–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Wall SM, Fischer MP, Glapion DM et al (2003) ANG II reduces net acid secretion in rat outer medullary collecting duct. Am J Physiol Renal Physiol 285:F930–F937

    Article  CAS  PubMed  Google Scholar 

  89. Patel AB, Frindt G, Palmer LG (2013) Feedback inhibition of ENaC during acute sodium loading in vivo. Am J Physiol Renal Physiol 304:F222–F232

    Article  CAS  PubMed  Google Scholar 

  90. Stone DK, Seldin DW, Kokko JP et al (1983) Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium-independent effect. J Clin Invest 72:77–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. DuBose TD Jr, Caflisch CR (1988) Effect of selective aldosterone deficiency on acidification in nephron segments of the rat inner medulla. J Clin Invest 82:1624–1632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Winter C, Kampik NB, Vedovelli L et al (2011) Aldosterone stimulates vacuolar H+-ATPase activity in renal acid-secretory intercalated cells mainly via a protein kinase C-dependent pathway. Am J Physiol Cell Physiol 301:C1251–C1261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Winter C, Schulz N, Giebisch G et al (2004) Nongenomic stimulation of vacuolar H+-ATPases in intercalated renal tubule cells by aldosterone. Proc Natl Acad Sci U S A 101:2636–2641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Kurtzman NA (2000) Renal tubular acidosis syndromes. South Med J 93:1042–1052

    Article  CAS  PubMed  Google Scholar 

  95. Izumi Y, Hori K, Nakayama Y et al (2011) Aldosterone requires vasopressin V1a receptors on intercalated cells to mediate acid–base homeostasis. J Am Soc Nephrol 22:673–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Wesson DE, Dolson GM (1997) Endothelin-1 increases rat distal tubule acidification in vivo. Am J Physiol 273:F586–F594

    CAS  PubMed  Google Scholar 

  97. Khanna A, Simoni J, Wesson D (2005) Endothelin-induced increased aldosterone activity mediates augmented distal nephron acidification as a result of dietary protein. J Am Soc Nephrol 16:1929–1935

    Article  CAS  PubMed  Google Scholar 

  98. Gueutin V, Vallet M, Jayat M et al (2013) Renal β-intercalated cells maintain body fluid and electrolyte balance. J Clin Invest 123:4219–4231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Hays S, Kokko JP, Jacobson HR (1986) Hormonal regulation of proton secretion in rabbit medullary collecting duct. J Clin Invest 78:1279–1286

    Google Scholar 

  100. Batlle D, Haque SK (2012) Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transplant 27:3691–3704

    Article  CAS  PubMed  Google Scholar 

  101. Fathallah DM, Bejaoui M, Sly WS et al (1994) A unique mutation underlying carbonic anhydrase II deficiency syndrome in patients of Arab descent. Hum Genet 94:581–582

    Article  CAS  PubMed  Google Scholar 

  102. Shah GN, Bonapace G, Hu PY et al (2004) Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat 24:272

    Article  PubMed  CAS  Google Scholar 

  103. Muzalef A, Alshehri M, Al-Abidi A et al (2005) Marble brain disease in two Saudi Arabian siblings. Ann Trop Paediatr 25:213–218

    Article  PubMed  Google Scholar 

  104. Bruce LJ, Cope DL, Jones GK et al (1997) Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest 100:1693–1707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Karet FE, Gainza FJ, Gyory AZ et al (1998) Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc Natl Acad Sci U S A 95:6337–6342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Jarolim P, Palek J, Amato D et al (1991) Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci U S A 88:11022–11026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Bruce LJ, Wrong O, Toye AM et al (2000) Band 3 mutations, renal tubular acidosis and South-East Asian ovalocytosis in Malaysia and Papua New Guinea: loss of up to 95% band 3 transport in red cells. Biochem J 350(Pt 1):41–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Alper SL (2010) Familial renal tubular acidosis. J Nephrol 23(Suppl 16):S57–S76

    PubMed  Google Scholar 

  109. Yenchitsomanus PT, Kittanakom S, Rungroj N et al (2005) Molecular mechanisms of autosomal dominant and recessive distal renal tubular acidosis caused by SLC4A1 (AE1) mutations. J Mol Genet Med 1:49–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Chu CY, King JC, Berrini M et al (2013) Functional rescue of a kidney anion exchanger 1 trafficking mutant in renal epithelial cells. PLoS One 8:e57062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Karet FE, Finberg KE, Nelson RD et al (1999) Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21:84–90

    Article  CAS  PubMed  Google Scholar 

  112. Joshua B, Kaplan DM, Raveh E et al (2008) Audiometric and imaging characteristics of distal renal tubular acidosis and deafness. J Laryngol Otol 122:193–198

    Article  CAS  PubMed  Google Scholar 

  113. Karet FE, Finberg KE, Nayir A et al (1999) Localization of a gene for autosomal recessive distal renal tubular acidosis with normal hearing (rdRTA2) to 7q33-34. Am J Hum Genet 65:1656–1665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Miura K, Sekine T, Takahashi K et al (2013) Mutational analyses of the ATP6V1B1 and ATP6V0A4 genes in patients with primary distal renal tubular acidosis. Nephrol Dial Transplant 28:2123–2130

    Article  CAS  PubMed  Google Scholar 

  115. Stover EH, Borthwick KJ, Bavalia C et al (2002) Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 39:796–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Vargas-Poussou R, Houillier P, Le Pottier N et al (2006) Genetic investigation of autosomal recessive distal renal tubular acidosis: evidence for early sensorineural hearing loss associated with mutations in the ATP6V0A4 gene. J Am Soc Nephrol 17:1437–1443

    Article  CAS  PubMed  Google Scholar 

  117. Fuster DG, Zhang J, Xie XS et al (2008) The vacuolar-ATPase B1 subunit in distal tubular acidosis: novel mutations and mechanisms for dysfunction. Kidney Int 73:1151–1158

    Article  CAS  PubMed  Google Scholar 

  118. Su Y, Blake-Palmer KG, Sorrell S et al (2008) Human H+ATPase a4 subunit mutations causing renal tubular acidosis reveal a role for interaction with phosphofructokinase-1. Am J Physiol Renal Physiol 295:F950–F958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Yang Q, Li G, Singh SK et al (2006) Vacuolar H+ -ATPase B1 subunit mutations that cause inherited distal renal tubular acidosis affect proton pump assembly and trafficking in inner medullary collecting duct cells. J Am Soc Nephrol 17:1858–1866

    Google Scholar 

  120. Finberg KE, Wagner CA, Bailey MA et al (2005) The B1-subunit of the H+ ATPase is required for maximal urinary acidification. Proc Natl Acad Sci U S A 102:13616–13621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Paunescu TG, Russo LM, Da Silva N et al (2007) Compensatory membrane expression of the V-ATPase B2 subunit isoform in renal medullary intercalated cells of B1-deficient mice. Am J Physiol Renal Physiol 293:F1915–F1926

    Article  CAS  PubMed  Google Scholar 

  122. Smith AN, Skaug J, Choate KA et al (2000) Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet 26:71–75

    Article  CAS  PubMed  Google Scholar 

  123. Norgett EE, Golder ZJ, Lorente-Canovas B (2012) Atp6v0a4 knockout mouse is a model of distal renal tubular acidosis with hearing loss, with additional extrarenal phenotype. Proc Natl Acad Sci U S A 109:13775–13780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Blomqvist SR, Vidarsson H, Fitzgerald S et al (2004) Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J Clin Invest 113:1560–1570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Vidarsson H, Westergren R, Heglind M et al (2009) The forkhead transcription factor Foxi1 is a master regulator of vacuolar H-ATPase proton pump subunits in the inner ear, kidney and epididymis. PLoS One 4:e4471

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The preparation of this article was supported in part by funds from the NIH (R01-DK077162), the Allan Smidt Charitable Fund, the Factor Family Foundation, and the Arvey Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira Kurtz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurtz, I., Rogova, I., Turygin, V., Huang, J., Abuladze, N., Pushkin, A. (2016). Renal H+-ATPase Function, Regulation, and Role in Distal Renal Tubular Acidosis. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Advances in Biochemistry in Health and Disease, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-24780-9_25

Download citation

Publish with us

Policies and ethics