Skip to main content

Role of ATPases in Disease Processes

  • Chapter
  • First Online:
Regulation of Ca2+-ATPases,V-ATPases and F-ATPases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 14))

  • 1009 Accesses

Abstract

In the course of evolution, a number of agents have emerged as carriers of signals that are essential for the correct functioning of cell life. Ca2+ is the most versatile of all of them; other messengers are normally committed to the regulation of a single cell function, or at most a few of them. Ca2+ instead regulates a plethora of cellular processes, beginning with the origin of new cell life, its growth, proliferation and differentiation and ending with its termination in the process of programmed cell death. Thus, precise regulation of calcium within the cellular compartments is of utmost importance to maintain proper cellular function. Calcium balance is finely regulated within the cell by the coordinated action of the calcium pumps and the channels. As calcium ions play such critical role in regulation of varied cellular functions, malfunction of the calcium pumps is associated with different disease progression. In the present review, we have discussed the properties and functioning of the calcium pumps and also highlighted its association with different malfunction and diseases. This knowledge might be effective in using the calcium pumps as therapeutic targets for drug development in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pedersen PL, Carafoli E (1987) Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem Sci 12:146–150

    Article  CAS  Google Scholar 

  2. Sen PC (2011) Endogenous modulators in the regulation of ion transporting enzymes: structure, function, interactions, recent advancements and future perspectives. Adv Biol Chem 1:74–92

    Article  CAS  Google Scholar 

  3. de Carvalho AP, Sweadner KJ, Penniston JT et al (2004) Mutations in the Na+/K+ - ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 43:169–175

    Article  Google Scholar 

  4. Riant F, De FM, Aridon P et al (2005) ATP1A2 mutations in 11 families with familial hemiplegic migraine. Hum Mutat 26:281

    Article  PubMed  Google Scholar 

  5. Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378

    Article  CAS  PubMed  Google Scholar 

  6. Carafoli E (2003) The calcium-signalling saga: tap water and protein crystals. Nat Rev Mol Cell Biol 4:326–332

    Article  CAS  PubMed  Google Scholar 

  7. Kaiser N, Edelman IS (1977) Calcium dependence of glucocorticoid induced lymphocytolysis. Proc Natl Acad Sci U S A 74:638–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaiser N, Edelman IS (1978) Calcium dependence of ionophore A23187 induced lymphocyte cytotoxicity. Cancer Res 38:3599–3603

    CAS  PubMed  Google Scholar 

  9. de Leiris J, Boucher F (1990) Ischemic myocardial cell necrosis: calcium overload or oxygen free-radicals? Rev Port Cardiol 9:153–158

    PubMed  Google Scholar 

  10. Richter C (1993) Pro-oxidants and mitochondrial Ca2+: their relationship to apoptosis and oncogenesis. FEBS Lett 325:104–107

    Article  CAS  PubMed  Google Scholar 

  11. Qian T, Herman B, Lemasters JJ (1999) The mitochondrial permeability transition mediates both necrotic and apoptotic death of hepatocytes exposed to Br- A23187. Toxicol Appl Pharmacol 154:117–125

    Article  CAS  PubMed  Google Scholar 

  12. Tsein RW (1987) Multiple types of calcium channels in excitable cells. Soc Gen Physiol Ser 41:167–187

    Google Scholar 

  13. Watkins JC (1989) NMDA agonists and antagonists. In: Watkins JC, Collingridge GL (eds) NMDA receptor. Oxford Univ. Press, New York, 1–17

    Google Scholar 

  14. Endo M (1970) Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228:34–36

    Article  CAS  PubMed  Google Scholar 

  15. Streb H (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306:67–69

    Article  CAS  PubMed  Google Scholar 

  16. Lee HC (1997) Mechanisms of calcium signaling by cyclic ADP ribose and NAADP. Physiol Rev 77:1133–1164

    CAS  PubMed  Google Scholar 

  17. Carafoli E (1974) The release of calcium from heart mitochondria by sodium. J Mol Cell Cardiol 6:361–371

    Article  CAS  PubMed  Google Scholar 

  18. Cartwright EJ, Oceandy D, Neyses L (2009) Physiological implications of the interaction between the plasma membrane calcium pump and nNOS. Pflugers Arch 457:665–671

    Article  CAS  PubMed  Google Scholar 

  19. Periasamy M, Kalyanasundaram A (2006) SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve 35:430–442

    Article  Google Scholar 

  20. MacLennan DH, Loke J, Odermatt A, Carafoli E, Klee CB (eds) (1999) Calcium as a cellular regulator. Oxford Univ Press, New York, pp 610–630

    Google Scholar 

  21. Sakuntabhai A (1999) Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet 21:271–277

    Article  CAS  PubMed  Google Scholar 

  22. Monteith GR, Mc Andrew D, Faddy HM et al (2007) Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7:519–530

    Article  CAS  PubMed  Google Scholar 

  23. Brouland JP, Gélébart P, Kovàcs T et al (2005) The loss of sarco/endoplasmic reticulum calcium transport ATPase 3 expression is an early event during the multistep process of colon carcinogenesis. Am J Pathol 167:233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Papp B, Brouland JP, Gélébart P et al (2004) Endoplasmic reticulum calcium transport ATPase expression during differentiation of colon cancer and leukaemia cells. Biochem Biophys Res Commun 322:1223–1236

    Article  CAS  PubMed  Google Scholar 

  25. Gélébart P, Martin V, Enouf J et al (2003) Identification of a new SERCA2 splice variant regulated during monocytic differentiation. Biochem Biophys Res Commun 303:676–684

    Article  PubMed  Google Scholar 

  26. Gélébart P, Kovàcs T, Brouland JP et al (2002) Expression of endomembrane calcium pumps in colon and gastric cancer cells. Induction of SERCA3 expression during differentiation. J Biol Chem 277:26310–26320

    Article  PubMed  Google Scholar 

  27. Launay S, Giannì M, Kovàcs T et al (1999) Lineage-specific modulation of calcium pump expression during myeloid differentiation. Blood 93:4395–4405

    CAS  PubMed  Google Scholar 

  28. Launay S, Bobe R, Lacabaratz-Porret C et al (1997) Modulation of endoplasmic reticulum calcium pump expression during T lymphocyte activation. J Biol Chem 272:10746–10750

    Article  CAS  PubMed  Google Scholar 

  29. Wuytack F, Papp B, Verboomen H et al (1994) A sarco/endoplasmic reticulum Ca(2+)-ATPase 3-type Ca2+ pump is expressed in platelets, in lymphoid cells, and in mast cells. J Biol Chem 269:1410–1416

    CAS  PubMed  Google Scholar 

  30. Papp B, Enyedi A, Kovàcs T et al (1991) Demonstration of two forms of calcium pumps by thapsigargin inhibition and radioimmunoblotting in platelet membrane vesicles. J Biol Chem 266:14593–14596

    CAS  PubMed  Google Scholar 

  31. Wuytack F, Raeymaekers L, Missiaen L (2002) Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 32:279–305

    Article  CAS  PubMed  Google Scholar 

  32. Dode L, Vilsen B, Van Baelen K et al (2002) Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 3 isoforms by steady-state and transient kinetic analyses. J Biol Chem 277:45579–45591

    Article  CAS  PubMed  Google Scholar 

  33. Poch E, Leach S, Snape S et al (1998) Functional characterization of alternatively spliced human SERCA3 transcripts. Am J Physiol 275:1449–1458

    Google Scholar 

  34. Wuytack F, Dode L, Baba-Aissa F et al (1995) The SERCA3- type of organellar Ca2+ pumps. Biosci Rep 15:299–306

    Article  CAS  PubMed  Google Scholar 

  35. Chandrasekera PC, Kargacin ME, Deans JP et al (2009) Determination of apparent calcium affinity for endogenously expressed human sarco/endoplasmic reticulum calcium ATPase isoform, SERCA3. Am J Physiol Cell Physiol 296(5):C1105–C1114

    Article  CAS  PubMed  Google Scholar 

  36. De Meis L, Vianna AL (1979) Energy interconversion by the Ca2+- dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 48:275–292

    Article  PubMed  Google Scholar 

  37. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: The calcium–apoptosis link. Nat Rev 4:522–565

    Article  Google Scholar 

  38. Miyawaki H, Zhou X, Ashraf M (1996) Calcium preconditioning elicits strong protection against ischemic injury via protein kinase C signaling pathway. Circ Res 79:137–146

    Article  CAS  PubMed  Google Scholar 

  39. BrodyI A (1969) Muscle contracture induced by exercise. A syndrome attributable to decreased relaxing factor. N Engl J Med 281:187–192

    Article  Google Scholar 

  40. Benders AA, Veerkamp JH, Oosterhof A, Jongen PJ, Bindels RJ, Smit LM, Busch HF, Wevers RA (1994) Ca2+ homeostasis in Brody’s disease. A study in skeletal muscle and cultured muscle cells and the effects of dantrolene an verapamil. J Clin Invest 94:741–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karpati G, Charuk J, Carpenter S, Jablecki C, Holland P (1986) Myopathy caused by a deficiency of Ca2_-adenosine triphosphatase in sarcoplasmic reticulum (Brody’s disease). Ann Neurol 20:38–49

    Article  CAS  PubMed  Google Scholar 

  42. Burge SM, Wilkinson JD (1992) Darier-White disease: a review of the clinical features in 163 patients. J Am Acad Dermatol 27:40–50

    Article  CAS  PubMed  Google Scholar 

  43. Kranias EG, Bers DM (2007) Calcium and cardiomyopathies. Subcell Biochem 45:523–537

    Article  CAS  PubMed  Google Scholar 

  44. Ghosh S, Adhikary A, Chakraborty S et al (2012) Nifetepimine, a dihydropyrimidone, ensures CD4+ T cell survival in tumor micro‐environment by maneuvering Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA). J Biol Chem 287:32881–32896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Varadi A, Lebel L, Hashim Y et al (1999) Sequence variants of the sarco(endo)plasmic reticulum Ca(2+)- transport ATPase 3 gene (SERCA3) in Caucasian type II diabetic patients (UK Prospective Diabetes Study 48). Diabetologia 42:1240–1243

    Article  CAS  PubMed  Google Scholar 

  46. Levy J, Zhu Z, Dunbar JC (1998) The effect of glucose and calcium on Ca2+- adenosine triphosphatase in pancreatic islets isolated from a normal and a non-insulin-dependent diabetes mellitus rat model. Metabolism 47:185–189

    Article  CAS  PubMed  Google Scholar 

  47. Ficarella R, Di Leva F, Bortolozzi M et al (2007) A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness. Proc Natl Acad Sci U S A 104:1516–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schultz JM, Yang Y, Caride AJ et al (2005) Modification of human hearing loss by plasma-membrane calcium pump PMCA2. N Engl J Med 352:1557–1564

    Article  CAS  PubMed  Google Scholar 

  49. Kuhn A, Goldstein DR, Hodges A et al (2007) Mutant Huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Hum Mol Genet 16:1845–1861

    Article  CAS  PubMed  Google Scholar 

  50. Kurnellas MP, Shull GE, Elkabes S (2005) Plasma membrane calcium ATPase deficiency causes neuronal pathology in the spinal cord: a potential mechanism for neurodegeneration in multiple sclerosis and spinal cord injury. FASEB J 19:298–300

    CAS  PubMed  Google Scholar 

  51. Kurnellas MP, Li H et al (2007) Molecular alterations in the cerebellum of the plasma membrane calcium ATPase 2 (PMCA2)-null mouse indicate abnormalities in Purkinje neurons. Mol Cell Neurosci 34:178–188

    Article  CAS  PubMed  Google Scholar 

  52. Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schuh K, Cartwright EJ, Jankevics E et al (2004) Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem 279:28220–28226

    Article  CAS  PubMed  Google Scholar 

  54. Kamagate A, Herchuelz A, Bollen A et al (2000) Expression of multiple plasma membrane Ca(2+)-ATPases in rat pancreatic islet cells. Cell Calcium 27:231–246

    Article  CAS  PubMed  Google Scholar 

  55. Varadi A, Molnar E, Ashcroft SJ (1996) A unique combination of plasma membrane Ca2+-ATPase isoforms is expressed in islets of Langerhans and pancreatic beta-cell lines. Biochem J 314:663–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge Department of Atomic Energy for financial assistance and Bose Institute for providing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimal C. Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghosh, S., Sen, P.C. (2016). Role of ATPases in Disease Processes. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Advances in Biochemistry in Health and Disease, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-24780-9_24

Download citation

Publish with us

Policies and ethics