Skip to main content

“Tuning” the ATPase Activity of Hsp90

  • Chapter
  • First Online:
Regulation of Ca2+-ATPases,V-ATPases and F-ATPases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 14))

  • 1080 Accesses

Abstract

The Hsp90 chaperone is responsible for the activation and maturation of an eclectic set of proteins. These are often key regulatory proteins that include protein kinases, steroid hormone receptors and transcription factors. Consequently, Hsp90 has become one of the most important anti-cancer targets of our time, as well as a target for other diseases, such a neurodegenerative, parasitic and viral diseases. The ATPase activity of Hsp90 is central to its mechanistic action and the binding and hydrolysis of ATP drives a conformational cycle that brings about activation and maturation of client proteins. The structurally diverse clientele of Hsp90 necessitates that Hsp90 co-operates with a variety of co-chaperones that modulate and tune its activity and thus its conformational cycle. Delivering client proteins is one role that specific co-chaperones play, while others stabilize client complex or provide directionality and alterations to the ATP-coupled conformational cycle of Hsp90. The formation of a catalytically active unit, able to hydrolyze ATP, involves all regions of Hsp90. This complexity has facilitated the evolution of a variety of co-chaperones that regulate Hsp90 by modulating different molecular switches within the chaperone. It has also allowed the evolution of Hsp90 orthologues that are kinetically different. Furthermore, it appears that the conformational switches of Hsp90 are not always coupled. Here, we describe the known Hsp90-co-chaperone complexes, the role that specific co-chaperones play in these complexes and, briefly, post-translational modifications that affect the ATPase activity of Hsp90.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearl LH (2005) Hsp90 and Cdc37—a chaperone cancer conspiracy. Curr Opin Genet Dev 15:55–61

    Article  CAS  PubMed  Google Scholar 

  2. Horejsi Z, Takai H, Adelman CA et al (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39:839–850

    Article  CAS  PubMed  Google Scholar 

  3. Takai H, Xie Y, de Lange T, Pavletich NP (2010) Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev 24:2019–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pratt WB, Morishima Y, Murphy M, Harrell M (2006) Chaperoning of glucocorticoid receptors. Handb Exp Pharmacol 172:111–138

    Article  CAS  Google Scholar 

  5. Pratt WB (1998) The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc Soc Exp Biol Med 217:420–434

    Article  CAS  PubMed  Google Scholar 

  6. Miyata Y, Nakamoto H, Neckers L (2013) The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 19:347–365

    Article  CAS  PubMed  Google Scholar 

  7. Workman P, Burrows F, Neckers L, Rosen N (2007) Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci 1113:202–216

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Chen M, Zhou J, Zhang X (2014) HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review). Int J Oncol 45:18–30

    PubMed  Google Scholar 

  9. Ou JR, Tan MS, Xie AM et al (2014) Heat shock protein 90 in Alzheimer’s disease. BioMed Res Int 2014:796869. doi:10.1155/2014/796869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP (2014) Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol. doi:10.1146/annurev-pharmtox-010814-124332

    PubMed  PubMed Central  Google Scholar 

  11. Ebrahimi-Fakhari D, Saidi LJ, Wahlster L (2013) Molecular chaperones and protein folding as therapeutic targets in Parkinson’s disease and other synucleinopathies. Acta Neuropathol Commun 1:79. doi:10.1186/2051-5960-1-79

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ramdhave AS, Patel D, Ramya I et al (2013) Targeting heat shock protein 90 for malaria. Mini Rev Med Chem 13:1903–1920

    Article  CAS  PubMed  Google Scholar 

  13. Geller R, Taguwa S, Frydman J (2012) Broad action of Hsp90 as a host chaperone required for viral replication. Biochim Biophys Acta 1823:698–706. doi:10.1016/j.bbamcr.2011.11.007

    Article  CAS  PubMed  Google Scholar 

  14. Altieri DC, Stein GS, Lian JB, Languino LR (2012) TRAP-1, the mitochondrial Hsp90. Biochim Biophys Acta 1823:767–773

    Article  CAS  PubMed  Google Scholar 

  15. Marzec M, Eletto D, Argon Y (2012) GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta 1823:774–787

    Article  CAS  PubMed  Google Scholar 

  16. Prodromou C (2012) The ‘active life’ of Hsp90 complexes. Biochim Biophys Acta 1823:614–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jackson SE (2013) Hsp90: structure and function. Top Curr Chem 328:155–240

    Article  CAS  PubMed  Google Scholar 

  18. Nagy PD, Wang RY, Pogany J et al (2011) Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology 411:374–382

    Article  CAS  PubMed  Google Scholar 

  19. Ali MM, Roe SM, Vaughan CK et al (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440:1013–1017

    Article  CAS  PubMed  Google Scholar 

  20. Zhang M, Kadota Y, Prodromou C et al (2010) Structural basis for assembly of Hsp90-Sgt1-CHORD protein complexes: implications for chaperoning of NLR innate immunity receptors. Mol Cell 39:269–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Panaretou B, Siligardi G, Meyer P et al (2002) Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol Cell 10:1307–1318

    Article  CAS  PubMed  Google Scholar 

  22. Prodromou C, Roe SM, O’Brien R et al (1997) Identification and structural characterisation of the ATP/ADP binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    Article  CAS  PubMed  Google Scholar 

  23. Graf C, Stankiewicz M, Kramer G, Mayer MP (2009) Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine. EMBO J 28:602–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hessling M, Richter K, Buchner J (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16:287–293

    Article  CAS  PubMed  Google Scholar 

  25. Prodromou C, Panaretou B, Chohan S et al (2000) The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO J 19:4383–4392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weikl T, Muschler P, Richter K et al (2000) C-terminal Regions of Hsp90 are Important for Trapping the Nucleotide during the ATPase Cycle. J Mol Biol 303:583–592

    Article  CAS  PubMed  Google Scholar 

  27. Frey S, Leskovar A, Reinstein J, Buchner J (2007) The ATPase cycle of the endoplasmic chaperone Grp94. J Biol Chem 282:35612–35620

    Article  CAS  PubMed  Google Scholar 

  28. Leskovar A, Wegele H, Werbeck ND et al (2008) The ATPase cycle of the mitochondrial Hsp90 analog Trap1. J Biol Chem 283:11677–11688

    Article  CAS  PubMed  Google Scholar 

  29. Ratzke C, Berkemeier F, Hugel T (2012) Heat shock protein 90’s mechanochemical cycle is dominated by thermal fluctuations. Proc Natl Acad Sci U S A 109:161–166

    Article  CAS  PubMed  Google Scholar 

  30. Smith DF (1993) Dynamics of heat-shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol Endocrinol 7:1418–1429

    CAS  PubMed  Google Scholar 

  31. Smith DF, Toft DO (1993) Steroid receptors and their associated proteins. Mol Endocrinol 7:4–11

    CAS  PubMed  Google Scholar 

  32. Smith DF, Whitesell L, Nair SC et al (1995) Progesterone receptor structure and function altered by geldanamycin, an Hsp90 binding agent. Mol Cell Biol 15:6804–6812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Prodromou C, Siligardi G, O’Brien R et al (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18:754–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gross M, Hessefort S (1996) Purification and characterisation of a 66-kDa protein from rabbit reticulocyte lysate which promotes the recycling of hsp70. J Biol Chem 271:16833–16841

    Article  CAS  PubMed  Google Scholar 

  35. Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates hsp70/hsp90 interactions in protein folding. J Biol Chem 273:3679–3686

    Article  CAS  PubMed  Google Scholar 

  36. Li J, Richter K, Buchner J (2011) Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle. Nat Struct Mol Biol 18:61–66

    Article  PubMed  CAS  Google Scholar 

  37. Siligardi G, Hu B, Panaretou B et al (2004) Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J Biol Chem 279(50):51989–51998

    Article  CAS  PubMed  Google Scholar 

  38. Siligardi G, Panaretou B, Meyer P et al (2002) Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J Biol Chem 277(23):20151–20159

    Article  CAS  PubMed  Google Scholar 

  39. Polier S, Samant RS, Clarke PA et al (2013) ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system. Nat Chem Biol 9:307–312. doi:10.1038/nchembio.1212

    Article  CAS  PubMed  Google Scholar 

  40. Bandhakavi S, McCann RO, Hanna DE, Glover CV (2003) A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases. J Biol Chem 278:2829–2836

    Article  CAS  PubMed  Google Scholar 

  41. Shao J, Prince T, Hartson SD, Matts RL (2003) Phosphorylation of serine 13 is required for the proper function of the Hsp90 co-chaperone, Cdc37. J Biol Chem 278:38117–38120

    Article  CAS  PubMed  Google Scholar 

  42. Miyata Y, Nishida E (2004) CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol Cell Biol 24:4065–4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vaughan CK, Gohlke U, Sobott F et al (2006) Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell 23:697–707

    Article  CAS  PubMed  Google Scholar 

  44. Xu W, Mollapour M, Prodromou C et al (2012) Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine. Mol Cell 47:434–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Scheufler C, Brinker A, Bourenkov G et al (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210

    Article  CAS  PubMed  Google Scholar 

  46. Southworth DR, Agard DA (2011) Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:Hop complex. Mol Cell 42:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Richter K, Muschler P, Hainzl O et al (2003) Sti1 is a noncompetitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the ATPase cycle. J Biol Chem 278:10328–10333

    Article  CAS  PubMed  Google Scholar 

  48. Roe SM, Ali MM, Meyer P et al (2004) The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 116:87–98

    Article  CAS  PubMed  Google Scholar 

  49. Zhang M, Boter M, Li K et al (2008) Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. EMBO J 27(20):2789–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kadota Y, Amigues B, Ducassou L et al (2008) Structural and functional analysis of SGT1-HSP90 core complex required for innate immunity in plants. EMBO Rep 9:1209–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rodrigo-Brenni MC, Thomas S, Bouck DC, Kaplan KB (2004) Sgt1p and Skp1p modulate the assembly and turnover of CBF3 complexes required for proper kinetochore function. Mol Biol Cell 15:3366–3378. doi:10.1091/mbc.E03-12-0887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boter M, Amigues B, Peart J et al (2007) Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19:3791–3804. doi:10.1105/tpc.107.050427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Catlett MG, Kaplan KB (2006) Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. J Biol Chem 281:33739–33748

    Article  CAS  PubMed  Google Scholar 

  54. Eckert K, Saliou JM, Monlezun L et al (2010) The Pih1-Tah1 cochaperone complex inhibits Hsp90 molecular chaperone ATPase activity. J Biol Chem 285:31304–31312. doi:10.1074/jbc.M110.138263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pal M, Morgan M, Phelps SE et al (2014) Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1. Structure 22:805–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Weaver AJ, Sullivan WP, Felts SJ et al (2000) Crystal structure and activity of human p23, a heat shock protein 90 co- chaperone. J Biol Chem 275:23045–23052

    Article  CAS  PubMed  Google Scholar 

  57. Freeman BC, Felts SJ, Toft DO, Yamamoto KR (2000) The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies. Genes Dev 14:422–434

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Young JC, Hartl FU (2000) Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. EMBO J 19:5930–5940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McLaughlin SH, Sobott F, Yao ZP et al (2006) The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J Mol Biol 356:746–758

    Article  CAS  PubMed  Google Scholar 

  60. Morris NR (1975) Mitotic mutants of Aspergillus nidulans. Genet Res 26:237–254

    Article  CAS  PubMed  Google Scholar 

  61. Morris NR, Xiang X, Beckwith SM (1995) Nuclear migration advances in fungi. Trends Cell Biol 5:278–282

    Article  CAS  PubMed  Google Scholar 

  62. Xiang X, Beckwith SM, Morris NR (1994) Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc Natl Acad Sci U S A 91:2100–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xiang X, Osmani AH, Osmani SA et al (1995) NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol Biol Cell 6:297–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Willins DA, Xiang X, Morris NR (1995) An alpha tubulin mutation suppresses nuclear migration mutations in Aspergillus nidulans. Genetics 141:1287–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Beckwith SM, Roghi CH, Morris NR (1995) The genetics of nuclear migration in fungi. Genet Eng 17:165–180

    CAS  Google Scholar 

  66. Miller BA, Zhang MY, Gocke CD et al (1999) A homolog of the fungal nuclear migration gene nudC is involved in normal and malignant human hematopoiesis. Exp Hematol 27:742–750

    Article  CAS  PubMed  Google Scholar 

  67. Matsumoto N, Ledbetter DH (1999) Molecular cloning and characterization of the human NUDC gene. Hum Genet 104:498–504

    Article  CAS  PubMed  Google Scholar 

  68. Zhou T, Zimmerman W, Liu X, Erikson RL (2006) A mammalian NudC-like protein essential for dynein stability and cell viability. Proc Natl Acad Sci U S A 103:9039–9044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang Y, Yan X, Cai Y et al (2010) NudC-like protein 2 regulates the LIS1/dynein pathway by stabilizing LIS1 with Hsp90. Proc Natl Acad Sci U S A 107:3499–3504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garcia-Ranea JA, Mirey G, Camonis J, Valencia A (2002) p23 and HSP20/alpha-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families. FEBS Lett 529:162–167

    Article  CAS  PubMed  Google Scholar 

  71. Wang Q, Li M, Wang Y et al (2008) RNA interference targeting CML66, a novel tumor antigen, inhibits proliferation, invasion and metastasis of HeLa cells. Cancer Lett 269:127–138

    Article  CAS  PubMed  Google Scholar 

  72. Riera J, Lazo PS (2009) The mammalian NudC-like genes: a family with functions other than regulating nuclear distribution. Cell Mol Life Sci 66:2383–2390

    Article  CAS  PubMed  Google Scholar 

  73. Zheng M, Cierpicki T, Burdette AJ et al (2011) Structural features and chaperone activity of the NudC protein family. J Mol Biol 409:722–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhu XJ, Liu X, Jin Q et al (2010) The L279P mutation of nuclear distribution gene C (NudC) influences its chaperone activity and lissencephaly protein 1 (LIS1) stability. J Biol Chem 285:29903–29910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Meyer P, Prodromou C, Liao C et al (2004) Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J 23:511–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Retzlaff M, Hagn F, Mitschke L et al (2010) Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol Cell 37:344–354

    Article  CAS  PubMed  Google Scholar 

  77. Riggs DL, Roberts PJ, Chirillo SC et al (2003) The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J 22:1158–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McLaughlin SH, Smith HW, Jackson SE (2002) Stimulation of the weak ATPase activity of human Hsp90 by a client protein. J Mol Biol 315:787–798

    Article  CAS  PubMed  Google Scholar 

  79. Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655

    Article  CAS  PubMed  Google Scholar 

  80. Mollapour M, Tsutsumi S, Donnelly AC et al (2010) Swe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function. Mol Cell 37:333–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mollapour M, Tsutsumi S, Kim YS et al (2011) Casein kinase 2 phosphorylation of Hsp90 threonine 22 modulates chaperone function and drug sensitivity. Oncotarget 2:407–417

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mollapour M, Tsutsumi S, Truman AW et al (2011) Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity. Mol Cell 41:672–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yu X, Guo ZS, Marcu MG et al (2002) Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst 94:504–513

    Article  CAS  PubMed  Google Scholar 

  84. Yang Y, Rao R, Shen J et al (2008) Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion. Cancer Res 68:4833–4842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Scroggins BT, Robzyk K, Wang D et al (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25(1):151–159. doi:10.1016/j.molcel.2006.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kovacs JJ, Murphy PJ, Gaillard S et al (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18:601–607

    Article  CAS  PubMed  Google Scholar 

  87. Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C et al (2005) S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A 102:8525–8530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Retzlaff M, Stahl M, Eberl HC et al (2009) Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep 10:1147–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Holt SE, Aisner DL, Baur J et al (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 13:817–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Garcia-Cardena G, Fan R, Shah V et al (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392:821–824

    Article  CAS  PubMed  Google Scholar 

  91. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133

    Article  CAS  Google Scholar 

  92. Park SJ, Suetsugu S, Takenawa T (2005) Interaction of HSP90 to N-WASP leads to activation and protection from proteasome-dependent degradation. EMBO J 24:1557–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang M, Windheim M, Roe SM et al (2005) Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol Cell 20:525–538

    Article  CAS  PubMed  Google Scholar 

  94. Das AK, Cohen PTW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J 17:1192–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boulon S, Pradet-Balade B, Verheggen C et al (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39:912–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Forget D, Lacombe AA, Cloutier P et al (2010) The protein interaction network of the human transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtubule assembly in nuclear import and biogenesis of RNA polymerase II. Mol Cell Proteomics 9:2827–2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gonzales FA, Zanchin NI, Luz JS, Oliveira CC (2005) Characterization of Saccharomyces cerevisiae Nop17p, a novel Nop58p-interacting protein that is involved in Pre-rRNA processing. J Mol Biol 346:437–455

    Article  CAS  PubMed  Google Scholar 

  98. Kurokawa M, Zhao C, Reya T, Kornbluth S (2008) Inhibition of apoptosome formation by suppression of Hsp90beta phosphorylation in tyrosine kinase-induced leukemias. Mol Cell Biol 28:5494–5506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Samarsky DA, Fournier MJ, Singer RH, Bertrand E (1998) The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization. EMBO J 17:3747–3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kakihara Y, Houry WA (2012) The R2TP complex: discovery and functions. Biochim Biophys Acta 1823:101–107

    Article  CAS  PubMed  Google Scholar 

  101. Hu J, Toft D, Anselmo D, Wang X (2002) In vitro reconstitution of functional hepadnavirus reverse transcriptase with cellular chaperone proteins. J Virol 76(1):269–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nair SC, Toran EJ, Rimerman RA et al (1996) A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1:237–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Felts SJ, Toft DO (2003) p23, a simple protein with complex activities. Cell Stress Chaperones 8:108–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Grad I, McKee TA, Ludwig SM et al (2006) The Hsp90 cochaperone p23 is essential for perinatal survival. Mol Cell Biol 26:8976–8983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lovgren AK, Kovarova M, Koller BH (2007) cPGES/p23 is required for glucocorticoid receptor function and embryonic growth but not prostaglandin E2 synthesis. Mol Cell Biol 27:4416–4430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tanioka T, Nakatani Y, Semmyo N et al (2000) Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem 275:32775–32782

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrisostomos Prodromou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prodromou, C., Morgan, R.M.L. (2016). “Tuning” the ATPase Activity of Hsp90. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Advances in Biochemistry in Health and Disease, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-24780-9_23

Download citation

Publish with us

Policies and ethics