Skip to main content

F1F0-ATPase Functions Under Markedly Acidic Conditions in Bacteria

  • Chapter
  • First Online:
Regulation of Ca2+-ATPases,V-ATPases and F-ATPases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 14))

Abstract

ATP synthase (F1F0-ATPase), consisting of a water-soluble F1 portion and a transmembrane FO portion, is present in bacterial cytoplasmic membranes and the inner membranes of mitochondria and chloroplasts. This enzyme plays a central role in biological energy transduction. F1F0-ATPase is bifunctional, being involved in ATP synthesis and hydrolysis. When bacteria are subjected to specific environmental challenges, F1F0-ATPase changes its operation to overcome the challenges. F1F0-ATPase synthesizes ATP using energy released from proton movement in oxidative phosphorylation under aerobic conditions at a near-neutral pH. This enzyme exports protons coupled with ATP hydrolysis as a reverse reaction in some specific environments. Recent research has indicated that F1F0-ATPase plays an important role in bacterial survival in markedly acidic environments. In this chapter, the roles of F1F0-ATPase in bacteria subjected to marked acidic stress are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elston T, Wang H, Oster G (1998) Energy transduction in ATP synthase. Nature 391:510–513

    Article  CAS  PubMed  Google Scholar 

  2. Sorgen PL, Bubb MR, Cain BD (1999) Lengthening the second stalk of F1FO -ATP synthase in Escherichia coli. J Biol Chem 274:36261–36266

    Article  CAS  PubMed  Google Scholar 

  3. Capaldi RA, Schulenberg B, Murray J, Aggeler R (2000) Cross-linking and electron microscopy studies of the structure and functioning of the Escherichia coli ATP synthase. J Exp Biol 203:29–33

    CAS  PubMed  Google Scholar 

  4. Wang H, Oster G (1998) Energy transduction in the F1 motor of ATP synthase. Nature 396:279–282

    Article  CAS  PubMed  Google Scholar 

  5. Foster DL, Fillingame RH (1982) Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli. J Biol Chem 257:2009–2015

    CAS  PubMed  Google Scholar 

  6. von Ballmoos C, Cook GM, Dimroth P (2008) Unique rotary ATP synthase and its biological diversity. Annu Rev Biophys 37:43–64

    Article  Google Scholar 

  7. Bulygin VV, Milgrom YM (2009) A bi-site mechanism for Escherichia coli F1-ATPase accounts for the observed positive catalytic cooperativity. Biochim Biophys Acta 1787:1016–1023

    Article  CAS  PubMed  Google Scholar 

  8. Sachs G, Weeks DL, Wen Y et al (2005) Acid acclimation by Helicobacter pylori. Physiology 20:429438

    Article  Google Scholar 

  9. Richard H, Foster JW (2004) Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186:60326041

    Google Scholar 

  10. Castanie-Cornet MP, Penfound TA, Smith D et al (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Castanie-Cornet MP, Foster JW (2001) Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology 147:709–715

    Article  CAS  PubMed  Google Scholar 

  12. Hersh BM, Farooq FT, Barstad DN et al (1996) A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol 178:3978–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iyer R, Williams C, Miller C (2003) Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 185:6556–6561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meng SY, Bennett GN (1992) Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol 174:2659–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun Y, Fukamachi T, Saito H et al (2012) Adenosine deamination increases the survival under acidic conditions in Escherichia coli. J Appl Microbiol 112:775–781

    Article  CAS  PubMed  Google Scholar 

  16. SunY FT, Saito H et al (2011) ATP requirement for acidic resistance in Escherichia coli. J Bacteriol 193:3072–3077

    Article  Google Scholar 

  17. Sun Y, Fukamachi T, Saito H et al (2012) Respiration and the F1F0-ATPase enhance survival under acidic conditions in Escherichia coli. PLoS One 7, e52577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bijlsma JJ, Lie-A-Ling M, Nootenboom IC et al (2000) Identification of loci essential for the growth of Helicobacter pylori under acidic conditions. J Infect Dis 182:1566–1569

    Article  CAS  PubMed  Google Scholar 

  19. Kullen MJ, Klaenhammer TR (1999) Identification of the pH-inducible, proton-translocating F1F0-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Mol Microbiol 33:1152–1161

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki T, Murakami T, Iino R et al (2003) F1F0-ATPase/synthase is geared to the synthesis mode by conformational rearrangement of epsilon subunit in response to proton motive force and ADP/ATP balance. J Biol Chem 278:46840–46846

    Article  CAS  PubMed  Google Scholar 

  21. Matin A, Zychlinsky E, Keyhan M et al (1996) Capacity of Helicobacter pylori to generate ionic gradients at low pH is similar to that of bacteria which grow under strongly acidic conditions. Infect Immun 64:1434–1436

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907

    Article  CAS  PubMed  Google Scholar 

  23. Cain BD, Simoni RD (1989) Proton translocation by the F1F0-ATPase of Escherichia coli. Mutagenic analysis of the a subunit. J Biol Chem 264:3292–3300

    CAS  PubMed  Google Scholar 

  24. Rastogi VK, Girvin ME (1999) Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402:263–268

    Article  CAS  PubMed  Google Scholar 

  25. von Ballmoos C, Dimroth P (2007) Two distinct proton binding sites in the ATP synthase family. Biochemistry 46:11800–11809

    Article  Google Scholar 

  26. Fillingame RH (1997) Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine. J Exp Biol 200:217–224

    CAS  PubMed  Google Scholar 

  27. Fillingame RH, Angevine CM, Dmitriev OY (2003) Mechanics of coupling proton movements to c-ring rotation in ATP synthase. FEBS Lett 555:29–34

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi H, Anraku Y (1972) Membrane-bound adenosine triphosphatase of Escherichia coli. I Partial purification and properties. J Biol Chem 71:387–399

    CAS  Google Scholar 

  29. Kobayashi H, Suzuki T, Kinoshita N et al (1984) Amplification of the Streptococcus faecalis proton-translocating ATPase by a decrease in cytoplasmic pH. J Bacteriol 158:1157–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kobayashi H (1985) A proton-translocating ATPase regulates pH of the bacterial cytoplasm. J Biol Chem 260:72–76

    CAS  PubMed  Google Scholar 

  31. Ferguson SA, Keis S, Cook GM (2006) Biochemical and molecular characterization of a Na+ translocating F1F0-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. J Bacteriol 188:5045–5054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cingolani G, Duncan TM (2011) Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an autoinhibited conformation. Nat Struct Mol Biol 18:701–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nowak KF, McCarty RE (2004) Regulatory role of the C-terminus of the epsilon subunit from the chloroplast ATP synthase. Biochemistry 43:3273–3279

    Article  CAS  PubMed  Google Scholar 

  34. Feniouk BA, Suzuki T, Yoshida M (2006) The role of subunit epsilon in the catalysis and regulation of F1F0-ATP synthase. Biochim Biophys Acta 1757:326–338

    Article  CAS  PubMed  Google Scholar 

  35. Nakanishi-Matsui M, Sekiya M, Yano S et al (2014) Inhibition of F1-ATPase rotational catalysis by the carboxyl-terminal domain of the subunit. J Biol Chem 289:30822–30831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maurer LM, Yohannes E, Bondurant SS et al (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187:304–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aris JP, Klionsky DJ, Simoni RD (1985) The Fo subunits of the Escherichia coli F1F0-ATP synthase are sufficient to form a functional proton pore. J Biol Chem 260:11207–11215

    CAS  PubMed  Google Scholar 

  38. Krebstakies T, Aldag I, Altendorf K et al (2008) The stoichiometry of subunit c of Escherichia coli ATP synthase is independent of its rate of synthesis. Biochemistry 47:6907–6916

    Article  CAS  PubMed  Google Scholar 

  39. Arikado E, Ishihara H, Ehara T et al (1999) Enzyme level of enterococcal F1F0-ATPase is regulated by pH at the step of assembly. Eur J Biochem 259:262–268

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki T, Unemoto T, Kobayashi H (1988) Novel streptococcal mutants defective in the regulation of H+-ATPase biosynthesis and in FO complex. J Biol Chem 263:11840–11843

    CAS  PubMed  Google Scholar 

  41. Wu CG, Bradford C, Lohman TM (2010) Escherichia coli RecBC helicase has two translocase activities controlled by a single ATPase motor. Nat Struct Mol Biol 17:1210–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Naseem R, Wann KT, Holland IB et al (2009) ATP regulates calcium efflux and growth in E. coli. J Mol Biol 391:42–56

    Article  CAS  PubMed  Google Scholar 

  43. Yan H, Fukamachi T, Saito H et al (2011) Expression and activity of Kdp under acidic conditions in Escherichia coli. Biol Pharm Bull 34:426–429

    Article  CAS  PubMed  Google Scholar 

  44. Ingledew WJ, Poole RK (1984) The respiratory chains of Escherichia coli. Microbiol Rev 48:222–271

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kinoshita N, Unemoto T, Kobayashi H (1984) Proton motive force is not obligatory for growth of Escherichia coli. J Bacteriol 160:1074–1077

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to express thanks to Hiroshi Kobayashi (Chiba University) for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yirong Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sun, Y. (2016). F1F0-ATPase Functions Under Markedly Acidic Conditions in Bacteria. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Advances in Biochemistry in Health and Disease, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-24780-9_22

Download citation

Publish with us

Policies and ethics