Skip to main content

Function and Regulation of Mammalian V-ATPase Isoforms

  • Chapter
  • First Online:
Book cover Regulation of Ca2+-ATPases,V-ATPases and F-ATPases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 14))

Abstract

The vacuolar (H+)-ATPases (V-ATPase) are a family of highly conserved multisubunit ATP-driven nanomotors, responsible for the acidification of a variety of intracellular compartments in eukaryotic cells. Vacuolar (H+)-ATPases are important in both normal physiology and in pathophysiology. These complicated and huge enzymes consist of at least 14 subunits divided into two domains (membrane-bound Vo and cytosolic V1). The peripheral stalk subunits of eukaryotic or mammalian vacuolar ATPases (V-ATPases) play key roles in regulating the assembly and disassembly of the enzyme. Interestingly, many of the peripheral stalk subunits also possess several homologues, which are known to be tissue-specific and are responsible for the formation of proton pumps with specialized functions within different tissues. Such tissue-specific isoforms/homologues and splice variants cannot complement each other, meaning that tissue/cell-specific regulation of V-ATPases is difficult to understand. In order to understand the structure/function and isoform-specific regulation mechanism of the human V-ATPase, several of the peripheral stalk subunits and their isoforms were expressed and characterized. In this review, we will discuss the binding interaction phenomena specifically at the stalk region, which mediates the reversible assembly and disassembly of V-ATPase in eukaryotic/mammalian cell systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duncan TM, Bulygin VV, Zhou Y et al (1995) Rotation of subunits during catalysis by Escherichia coli F1- ATPase. PNAS 92:10964–10968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kinosita K, Yasuda R, Noji H et al (1998) F1-ATPase: a rotary motor made of a single molecule. Cell 93:21–24

    Article  CAS  PubMed  Google Scholar 

  3. Noji H, Yasuda R, Yoshida M et al (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    Article  CAS  PubMed  Google Scholar 

  4. Sabbert D, Engelbrecht S, Junge W (1996) Intersubunit rotation in active F-ATPase. Nature 381:623–625

    Article  CAS  PubMed  Google Scholar 

  5. Gruber G, Wieczorek H, Harvey WR et al (2001) Structure–function relationships of A-, F- and V-ATPases. J Exp Biol 204:2597–2605

    CAS  PubMed  Google Scholar 

  6. Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase- a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677

    Article  CAS  PubMed  Google Scholar 

  7. Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929

    Article  CAS  PubMed  Google Scholar 

  8. Muller V, Gruber G (2003) ATP synthases: structure, function and evolution of unique energy converters. Cell Mol Life Sci 60:474–494

    Article  CAS  PubMed  Google Scholar 

  9. Cross RL, Muller V (2004) Evolution of A, F and V-type ATP synthases and ATPases: reversal in function and changes in H+/ATP coupling ratio. FEBS Lett 576:1–4

    Article  CAS  PubMed  Google Scholar 

  10. Imamura H et al (2003) Evidence for rotation of V1-ATPase. PNAS 100:2312–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murata T, Igarashi K, Kakinuma Y et al (2000) Na+ binding of V-type Na+-ATPase in Enterococcus hirae. J Biol Chem 275:13415–13419

    Article  CAS  PubMed  Google Scholar 

  12. Murata T, Yamato I, Kakinuma Y et al (2008) Ion binding and selectivity of the rotor ring of the Na+-transporting V-ATPase. PNAS 105(25):8607–8612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Murata T, Yamato I, Kakinuma Y et al (2005) Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae. Science 308(5722):654–659

    Article  CAS  PubMed  Google Scholar 

  14. Mizutani K, Yamamoto M, Suzuki K et al (2011) Structure of the rotor ring modified with N, N'-dicyclohexylcarbodiimide of the Na+-transporting vacuolar ATPase. PNAS 108(33):13474–13479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saijo S, Arai S, Hossain KM et al (2011) Crystal structure of the central axis DF complex of the prokaryotic V-ATPase. PNAS 108(50):19955–19960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arai S, Saijo S, Suzuki K et al (2013) Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Nature 493(7434):703–707

    Article  CAS  PubMed  Google Scholar 

  17. Minagawa Y, Ueno H, Hara M et al (2013) Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase. J Biol Chem 288(45):32700–32707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ueno H, Minagawa Y, Hara M et al (2014) Torque generation of Enterococcus hirae V-ATPase. J Biol Chem 289(45):31212–31223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Venzke D, Domgall I, Kocher T et al (2005) Elucidation of the stator organization in the V-ATPase of Neurospora crassa. J Mol Biol 349:659–669

    Article  CAS  PubMed  Google Scholar 

  20. Wilkens S, Inoue T, Forgac M (2004) Three-dimensional structure of the vacuolar ATPase: localization of subunit H by difference imaging and chemical cross-linking. J Biol Chem 279:41942–41949

    Article  CAS  PubMed  Google Scholar 

  21. Wilkens S, Zhang Z, Zheng Y (2005) A structural model of the vacuolar ATPase from transmission electron microscopy. Micron 36(2):109–126

    Article  CAS  PubMed  Google Scholar 

  22. Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    Article  CAS  PubMed  Google Scholar 

  23. Sambade M, Kane PM (2004) The yeast vacuolar proton-translocating ATPase contains a subunit homologous to the Manduca sexta and bovine e subunits that is essential for function. J Biol Chem 279:17361–17365

    Article  CAS  PubMed  Google Scholar 

  24. Supek F, Supekova L, Mandiyan S et al (1994) A novel accessory subunit for vacuolar H+-ATPase from chromaffin granules. J Biol Chem 269:24102–24106

    CAS  PubMed  Google Scholar 

  25. Powell B, Graham LA, Stevens TH (2000) Molecular characterization of the yeast vacuolar H+-ATPase proton pore. J Biol Chem 275:23654–23660

    Article  CAS  PubMed  Google Scholar 

  26. Wilkens S, Forgac M (2001) Three-dimensional structure of the vacuolar ATPase proton channel by electron microscopy. J Biol Chem 276:44064–44068

    Article  CAS  PubMed  Google Scholar 

  27. Jefferies KC, Forgac M (2008) Subunit H of the V-ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F. J Biol Chem 283:4512–4519

    Article  CAS  PubMed  Google Scholar 

  28. Lee LK, Stewart AG, Donohoe M et al (2010) The structure of the peripheral stalk of Thermus thermophilus H+-ATPase/synthase. Nat Struct Mol Biol 17:373–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tomashek JJ, Graham LA, Hutchins MU et al (1997) V1-situated stalk subunits of the yeast vacuolar proton-translocating ATPase. J Biol Chem 272:26787–26793

    Article  CAS  PubMed  Google Scholar 

  30. Xu T, Vasilyeva E, Forgac M (1999) Subunit interactions in the clathrin-coated vesicle vacuolar (H+)-ATPase complex. J Biol Chem 274:28909–28915

    Article  CAS  PubMed  Google Scholar 

  31. Jones RP, Durose LJ, Findlay JB et al (2005) Defined sites of interaction between subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the stator structure of the vacuolar H+-ATPase. Biochemistry 44:3933–3941

    Article  CAS  PubMed  Google Scholar 

  32. Féthière J, Venzke D, Diepholz M et al (2004) Building the stator of the yeast vacuolar-ATPase: specific interaction between subunits E and G. J Biol Chem 279:40670–40676

    Article  PubMed  Google Scholar 

  33. Ohira M, Smardon AM, Charsky CMH et al (2006) The E and G subunits of the yeast V-ATPase interact tightly and Are both present at more than one copy per V1 complex. J Biol Chem 281(32):22752–22760

    Article  CAS  PubMed  Google Scholar 

  34. Féthière J, Venzke D, Madden DR et al (2005) Peripheral stator of the yeast V-ATPase: stoichiometry and specificity of interaction between the EG complex and subunits C and H. Biochemistry 44:15906–15914

    Article  PubMed  Google Scholar 

  35. Inoue T, Forgac M (2005) Cysteine-mediated cross-linking indicates that subunit C of the V-ATPase is in close proximity to subunits E and G of the V1 domain and subunit a of the Vo domain. J Biol Chem 280:27896–27903

    Article  CAS  PubMed  Google Scholar 

  36. Drory O, Frolow F, Nelson N (2004) Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Rep 5:1148–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sagermann M, Stevens TH, Matthews BW (2001) Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae. PNAS 98(13):7134–7139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oot RA, Huang LS, Berry EA et al (2012) Crystal structure of the yeast vacuolar ATPase heterotrimeric EGC(head) peripheral stalk complex. Structure 20(11):1881–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kane PM (1995) Disassembly and reassembly of the yeast vacuolar H+-ATPase in vivo. J Biol Chem 270:17025–17032

    CAS  PubMed  Google Scholar 

  40. Sumner JP, Dow JAT, Earley FGP et al (1995) Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem 270:5649–5653

    Article  CAS  PubMed  Google Scholar 

  41. Rahman S, Yamato I, Saijo S et al (2013) Biochemical and biophysical properties of interactions between subunits of the peripheral stalk region of human V-ATPase. PLoS ONE 8(2), e55704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rahman S, Ishizuka-Katsura Y, Arai S (2011) Expression, purification and characterization of isoforms of peripheral stalk subunits of human V-ATPase. Protein Expr Purif 78:181–188

    Article  CAS  PubMed  Google Scholar 

  43. Gruenberg J, van der Goot FG (2006) Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol 7:495–504

    Article  CAS  PubMed  Google Scholar 

  44. Gruenke JA, Armstrong RT, Newcomb WW et al (2002) New insights into the spring-loaded conformational change of influenza virus hemagglutinin. J Virol 76:4456–4466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abrami L, Lindsay M, Parton RG et al (2004) Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J Cell Biol 166:645–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sennoune SR, Bakunts K, Martinez GM et al (2004) Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol 286(2004):C1443–C1452

    Article  CAS  PubMed  Google Scholar 

  47. Hinton A, Bond S, Forgac M (2009) V-ATPase functions in normal and disease processes. Eur J Physiol 457:589–598

    Article  CAS  Google Scholar 

  48. Breton S, Brown D (2007) New insights into the regulation of V-ATPase-dependent proton secretion. Am J Physiol Renal Physiol 292:F1–F10

    Article  CAS  PubMed  Google Scholar 

  49. Karet FE, Finberg KE, Nelson RD et al (1999) Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21:84–90

    Article  CAS  PubMed  Google Scholar 

  50. Kane PM (2012) Targeting reversible disassembly as a mechanism of controlling V-ATPase activity. Curr Protein Pept Sci 13:117–123

    Google Scholar 

  51. Zimmermann B, Dames P, Walz B et al (2003) Distribution and serotonin-induced activation of vacuolar-type H+-ATPase in the salivary glands of the blowfly Calliphora vicina. J Exp Biol 206:1867–1876

    Article  CAS  PubMed  Google Scholar 

  52. Wieczorek H, Beyenbach KW, Huss M et al (2009) Vacuolar-type proton pumps in insect epithelia. J Exp Biol 212(11):1611–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sautin YY, Lu M, Gaugler A et al (2005) Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol 25:575–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Trombetta ES, Ebersold M, Garrett W et al (2003) Activation of lysosomal function during dendritic cell maturation. Science 299:1400–1403

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Z, Charsky C, Kane PM et al (2003) Yeast V1-ATPase: affinity purification and structural features by electron microscopy. J Biol Chem 278:47299–47306

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Z, Zheng Y, Mazon H et al (2008) Structure of the yeast vacuolar ATPase. J Biol Chem 283:35983–35995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yamamoto M, Unzai S, Saijo S et al (2008) Interaction and stoichiometry of the peripheral stalk subunits NtpE and NtpF and the N-terminal hydrophilic domain of NtpI of Enterococcus hirae V-ATPase. J Biol Chem 283:19422–19431

    Article  CAS  PubMed  Google Scholar 

  58. Yokoyama K, Nagata K, Imamura H et al (2003) Subunit Arrangement in V-ATPase from Thermus thermophilus. J Biol Chem 278:42686–42691

    Article  CAS  PubMed  Google Scholar 

  59. Hildenbrand ZL, Molugu SK, Stock D et al (2010) The C-H peripheral stalk base: a novel component in V1-ATPase assembly. PLoS One 5, e12588

    Article  PubMed  PubMed Central  Google Scholar 

  60. Armbrüster A, Hohna C, Hermesdorf A et al (2005) Evidence for major structural changes in subunit C of the vacuolar ATPase due to nucleotide binding. FEBS Lett 579:1961–1967

    Article  PubMed  Google Scholar 

  61. Diepholz M, Venzke D, Prinz S et al (2008) A different conformation for EGC stator subcomplex in solution and in the assembled yeast V-ATPase: possible implications for regulatory disassembly. Structure 16:1789–1798

    Article  CAS  PubMed  Google Scholar 

  62. Oot RA, Wilkens S (2010) Domain characterization and interaction of the yeast vacuolar ATPase subunit C with the peripheral stator stalk subunits E and G. J Biol Chem 285:24654–24664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang Z, Inoue T, Forgac M et al (2006) Localization of subunit C (Vma5p) in the yeast vacuolar ATPase by immuno electron microscopy. FEBS Lett 580:2006–2010

    Article  CAS  PubMed  Google Scholar 

  64. Qi J, Forgac M (2008) Function and subunit interactions of the N-terminal domain of subunit a (Vph1p) of the yeast V-ATPase. J Biol Chem 283:19274–19282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Curtis KK, Francis SA, Oluwatosin Y et al (2002) Mutational analysis of the subunit C (Vma5p) of the yeast vacuolar H+-ATPase. J Biol Chem 277:8979–8988

    Article  CAS  PubMed  Google Scholar 

  66. Lokanath NK, Matsuura Y, Kuroishi C et al (2007) Dimeric core structure of modular stator subunit E of archaeal H+-ATPase. J Mol Biol 366:933–944

    Article  CAS  PubMed  Google Scholar 

  67. Kish-Trier E, Briere LK, Dunn SD et al (2008) The stator complex of the A1A0-ATP synthase—structural characterization of the E and H subunits. J Mol Biol 375:673–685

    Article  CAS  PubMed  Google Scholar 

  68. Esteban O, Bernal RA, Donohoe M et al (2008) Stoichiometry and localization of the stator subunits E and G in Thermus thermophilus H+-ATPase/synthase. J Biol Chem 283:2595–2603

    Article  CAS  PubMed  Google Scholar 

  69. Kish-Trier E, Wilkens S (2009) Domain architecture of the stator complex of the A1A0-ATP synthase from Thermoplasma acidophilum. J Biol Chem 284:12031–12040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Oot RA, Wilkens S (2012) Subunit interactions at the V1-Vo interface in the yeast vacuolar ATPase. J Biol Chem 287:13396–13406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Imai-Senga Y, Sun-Wada GH, Wada Y et al (2002) A human gene, ATP6E1, encoding a testis specific isoform of H+-ATPase subunit E. Gene 289(1–2):7–12

    Article  CAS  PubMed  Google Scholar 

  72. Sun-Wada GH, Wada Y (2010) Vacuolar-type proton pump ATPases: roles of subunit isoforms in physiology and pathology. Histol Histopathol 25(12):1611–1620

    CAS  PubMed  Google Scholar 

  73. Sun-Wada GH, Imai-Senga Y, Yamamoto A et al (2002) A Proton pump ATPase with testis-specific E1-subunit isoform required for acrosome acidification. J Biol Chem 277:18098–18105

    Article  CAS  PubMed  Google Scholar 

  74. Sun-Wada GH, Murata Y, Namba M, Yamamoto A et al (2003) Mouse proton pump ATPase C subunit isoforms (C2-a and C2-b) specifically expressed in kidney and lung. J Biol Chem 278:44843–44851

    Article  CAS  PubMed  Google Scholar 

  75. Sun-Wada GH, Yoshimizu T, Imai-Senga Y et al (2003) Diversity of mouse proton-translocating ATPase: presence of multiple isoforms of the C, d and G subunits. Gene 302:147–153

    Article  CAS  PubMed  Google Scholar 

  76. Murata Y, Sun-Wada GH, Yoshimizu T et al (2002) Differential localization of the vacuolar H+ pump with G subunit isoforms (G1 and G2) in mouse neurons. J Biol Chem 277:36296–36303

    Article  CAS  PubMed  Google Scholar 

  77. Hayashi K, Sun-Wada GH, Wada Y et al (2008) Defective assembly of a hybrid vacuolar H+-ATPase containing the mouse testis-specific E1 isoform and yeast subunits. Biochim Biophys Acta 1777:1370–1377

    Article  CAS  PubMed  Google Scholar 

  78. Terada T, Murata T, Shirouzu M et al (2014) Cell-free expression of protein complexes for structural biology. Methods Mol Biol 1091:151–159

    Article  CAS  PubMed  Google Scholar 

  79. Toyomura T, Oka T, Yamaguchi C et al (2000) Three subunit a isoforms of mouse vacuolar H+-ATPase. Preferential expression of the a3 isoform during osteoclast differentiation. J Biol Chem 275:8760–8765

    Article  CAS  PubMed  Google Scholar 

  80. Oka T, Murata Y, Namba M et al (2001) a4, a unique kidney-specific isoform of mouse vacuolar H+-ATPase subunit a. J Biol Chem 276:40050–40054

    Article  CAS  PubMed  Google Scholar 

  81. Nishi T, Forgac M (2000) Molecular cloning and expression of three isoforms of the 100 kDa a subunit of the mouse vacuolar proton-translocating ATPase. J Biol Chem 275:6824–6830

    Article  CAS  PubMed  Google Scholar 

  82. Smith AN, Finberg KE, Wagner CA et al (2001) Molecular cloning and characterization of Atp6n1b: a novel fourth murine vacuolar H+-ATPase a-subunit gene. J Biol Chem 276:42382–42388

    Article  CAS  PubMed  Google Scholar 

  83. Feng NH, Lin HI, Wang JS et al (2005) Differential expression of a V-type ATPase C subunit gene, Atp6v1c2, during culture of rat lung type II pneumocytes. J Biomed Sci 12:899–911

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Yamato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rahman, S., Yamato, I., Murata, T. (2016). Function and Regulation of Mammalian V-ATPase Isoforms. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Advances in Biochemistry in Health and Disease, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-24780-9_15

Download citation

Publish with us

Policies and ethics