Skip to main content

Regulation of Ca2+ Transport ATPases by Amino- and Carboxy-Terminal Extensions: Mechanisms and (Patho)Physiological Implications

  • Chapter
  • First Online:
Regulation of Ca2+-ATPases,V-ATPases and F-ATPases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 14))

Abstract

Ca2+ transport ATPases play a vital role in maintaining low cytosolic Ca2+ concentrations. Three types of Ca2+ ATPases exist: the Sarco/Endoplasmic Reticulum Ca2+ ATPases (SERCA), Secretory Pathway Ca2+ ATPases (SPCA), and Plasma Membrane Ca2+ ATPases (PMCA). The expression of numerous Ca2+ ATPase isoforms and splice variants generate a complex toolkit of Ca2+ transporters that provide cell type and compartmental specific functions. Still, the basic Ca2+ transporting mechanism is highly conserved in all Ca2+ ATPase variants, which is related to a highly conserved core structure holding a transmembrane domain for Ca2+ binding and transport, and three cytosolic domains, which coordinate ATP hydrolysis. In contrast, the N- and C-terminal stretches of the various isoforms and splice variants display much more variation. They provide additional isoform or splice variant specific functions to the Ca2+ pumps, which are reviewed here. The N- and C-termini may regulate the enzymatic properties of the Ca2+ pumps via intramolecular interactions, contain targeting signals, recruit other proteins, bind lipids/ions or may be subjected to posttranslational modifications. Insights into the properties and molecular mechanisms of the N- and C-terminal extensions may offer novel therapeutic opportunities to regulate and control specific Ca2+ transporter isoforms in a diseased context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  2. Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433

    Article  CAS  PubMed  Google Scholar 

  3. Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40:243–266

    Article  CAS  PubMed  Google Scholar 

  4. Vangheluwe P, Sepulveda MR, Missiaen L et al (2009) Intracellular Ca2+- and Mn2+-transport ATPases. Chem Rev 109:4733–4759

    Google Scholar 

  5. Toyoshima C, Nakasako M, Nomura H et al (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405:647–655

    Article  CAS  PubMed  Google Scholar 

  6. Toyoshima C (2009) How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. Biochim Biophys Acta 1793:941–946

    Article  CAS  PubMed  Google Scholar 

  7. Gourdon P, Liu XY, Skjorringe T et al (2011) Crystal structure of a copper-transporting PIB-type ATPase. Nature 475:59–64

    Article  CAS  PubMed  Google Scholar 

  8. Braiterman L, Nyasae L, Guo Y et al (2009) Apical targeting and Golgi retention signals reside within a 9-amino acid sequence in the copper-ATPase, ATP7B. Am J Physiol Gastrointest Liver Physiol 296:G433–G444

    Article  CAS  PubMed  Google Scholar 

  9. Braiterman L, Nyasae L, Leves F et al (2011) Critical roles for the COOH terminus of the Cu-ATPase ATP7B in protein stability, trans-Golgi network retention, copper sensing, and retrograde trafficking. Am J Physiol Gastrointest Liver Physiol 301:G69–G81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poulsen H, Khandelia H, Morth JP et al (2010) Neurological disease mutations compromise a C-terminal ion pathway in the Na+/K+-ATPase. Nature 467:99–102

    Google Scholar 

  11. Toustrup-Jensen MS, Holm R, Einholm AP et al (2009) The C terminus of Na+, K+-ATPase controls Na+ affinity on both sides of the membrane through Arg935. J Biol Chem 284:18715–18725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Palmgren MG, Sommarin M, Serrano R et al (1991) Identification of an autoinhibitory domain in the C-terminal region of the plant plasma membrane H+-ATPase. J Biol Chem 266:20470–20475

    Google Scholar 

  13. Portillo F, de Larrinoa IF, Serrano R (1989) Deletion analysis of yeast plasma membrane H+-ATPase and identification of a regulatory domain at the carboxyl-terminus. FEBS Lett 247:381–385

    Article  CAS  PubMed  Google Scholar 

  14. Ekberg K, Palmgren MG, Veierskov B et al (2010) A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein. J Biol Chem 285:7344–7350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Svennelid F, Olsson A, Piotrowski M et al (1999) Phosphorylation of Thr-948 at the C terminus of the plasma membrane H+-ATPase creates a binding site for the regulatory 14-3-3 protein. Plant Cell 11:2379–2391

    Google Scholar 

  16. Zhou X, Sebastian TT, Graham TR (2013) Auto-inhibition of Drs2p, a yeast phospholipid flippase, by its carboxyl-terminal tail. J Biol Chem 288:31807–31815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Natarajan P, Liu K, Patil DV et al (2009) Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nat Cell Biol 11:1421–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sorensen DM, Buch-Pedersen MJ, Palmgren MG (2010) Structural divergence between the two subgroups of P5 ATPases. Biochim Biophys Acta 1797:846–855

    Article  CAS  PubMed  Google Scholar 

  19. van Veen S, Sorensen DM, Holemans T et al (2014) Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson’s disease and other neurological disorders. Front Mol Neurosci 7:48

    PubMed  PubMed Central  Google Scholar 

  20. Hovnanian A (2007) SERCA pumps and human diseases. Subcell Biochem 45:337–363

    Article  CAS  PubMed  Google Scholar 

  21. Dally S, Monceau V, Corvazier E et al (2009) Compartmentalized expression of three novel sarco/endoplasmic reticulum Ca2+ATPase 3 isoforms including the switch to ER stress, SERCA3f, in non-failing and failing human heart. Cell Calcium 45:144–154

    Article  CAS  PubMed  Google Scholar 

  22. Brandl CJ, deLeon S, Martin DR et al (1987) Adult forms of the Ca2+ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J Biol Chem 262:3768–3774

    CAS  PubMed  Google Scholar 

  23. Zador E, Vangheluwe P, Wuytack F (2007) The expression of the neonatal sarcoplasmic reticulum Ca2+ pump (SERCA1b) hints to a role in muscle growth and development. Cell Calcium 41:379–388

    Article  CAS  PubMed  Google Scholar 

  24. Brandl CJ, Green NM, Korczak B et al (1986) Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell 44:597–607

    Article  CAS  PubMed  Google Scholar 

  25. Chami M, Gozuacik D, Lagorce D et al (2001) SERCA1 truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis. J Cell Biol 153:1301–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chami M, Oules B, Szabadkai G et al (2008) Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol Cell 32:641–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wuytack F, Raeymaekers L, Missiaen L (2002) Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 32:279–305

    Article  CAS  PubMed  Google Scholar 

  28. Vangheluwe P, Raeymaekers L, Dode L et al (2005) Modulating sarco(endo)plasmic reticulum Ca2+ ATPase 2 (SERCA2) activity: cell biological implications. Cell Calcium 38:291–302

    Article  CAS  PubMed  Google Scholar 

  29. Lytton J, MacLennan DH (1988) Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2+-ATPase gene. J Biol Chem 263:15024–15031

    CAS  PubMed  Google Scholar 

  30. Lytton J, Zarain-Herzberg A, Periasamy M et al (1989) Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+-ATPase. J Biol Chem 264:7059–7065

    CAS  PubMed  Google Scholar 

  31. Zarain-Herzberg A, MacLennan DH, Periasamy M (1990) Characterization of rabbit cardiac sarco(endo)plasmic reticulum Ca2+-ATPase gene. J Biol Chem 265:4670–4677

    CAS  PubMed  Google Scholar 

  32. Baba-Aissa F, Raeymaekers L, Wuytack F et al (1996) Distribution of the organellar Ca2+ transport ATPase SERCA2 isoforms in the cat brain. Brain Res 743:141–153

    Article  CAS  PubMed  Google Scholar 

  33. Dally S, Bredoux R, Corvazier E et al (2006) Ca2+-ATPases in non-failing and failing heart: evidence for a novel cardiac sarco/endoplasmic reticulum Ca2+-ATPase 2 isoform (SERCA2c). Biochem J 395:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kimura T, Nakamori M, Lueck JD et al (2005) Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet 14:2189–2200

    Article  CAS  PubMed  Google Scholar 

  35. Gelebart P, Martin V, Enouf J et al (2003) Identification of a new SERCA2 splice variant regulated during monocytic differentiation. Biochem Biophys Res Commun 303:676–684

    Article  CAS  PubMed  Google Scholar 

  36. Lee MG, Xu X, Zeng W et al (1997) Polarized expression of Ca2+ pumps in pancreatic and salivary gland cells. Role in initiation and propagation of [Ca2+]i waves. J Biol Chem 272:15771–15776

    Article  CAS  PubMed  Google Scholar 

  37. Mountian I, Manolopoulos VG, De Smedt H et al (1999) Expression patterns of sarco/endoplasmic reticulum Ca2+-ATPase and inositol 1,4,5-trisphosphate receptor isoforms in vascular endothelial cells. Cell Calcium 25:371–380

    Google Scholar 

  38. Brouland JP, Gelebart P, Kovacs T et al (2005) The loss of sarco/endoplasmic reticulum calcium transport ATPase 3 expression is an early event during the multistep process of colon carcinogenesis. Am J Pathol 167:233–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dode L, Vilsen B, Van Baelen K et al (2002) Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 3 isoforms by steady-state and transient kinetic analyses. J Biol Chem 277:45579–45591

    Article  CAS  PubMed  Google Scholar 

  40. MacLennan DH, Toyofuku T, Lytton J (1992) Structure-function relationships in sarcoplasmic or endoplasmic reticulum type Ca2+ pumps. Ann N Y Acad Sci 671:1–10

    Article  CAS  PubMed  Google Scholar 

  41. Grover AK, Kwan CY, Samson SE (2003) Effects of peroxynitrite on sarco/endoplasmic reticulum Ca2+ pump isoforms SERCA2b and SERCA3a. Am J Physiol Cell Physiol 285:C1537–C1543

    Article  CAS  PubMed  Google Scholar 

  42. Lytton J, Westlin M, Burk SE et al (1992) Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 267:14483–14489

    CAS  PubMed  Google Scholar 

  43. Verboomen H, Wuytack F, Van den Bosch L et al (1994) The functional importance of the extreme C-terminal tail in the gene 2 organellar Ca2+-transport ATPase (SERCA2a/b). Biochem J 303:979–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vandecaetsbeek I, Trekels M, De Maeyer M et al (2009) Structural basis for the high Ca2+ affinity of the ubiquitous SERCA2b Ca2+ pump. Proc Natl Acad Sci U S A 106:18533–18538

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gorski PA, Trieber CA, Lariviere E et al (2012) Transmembrane helix 11 is a genuine regulator of the endoplasmic reticulum Ca2+ pump and acts as a functional parallel of beta-subunit on alpha-Na+, K+-ATPase. J Biol Chem 287:19876–19885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Verboomen H, Wuytack F, De Smedt H et al (1992) Functional difference between SERCA2a and SERCA2b Ca2+ pumps and their modulation by phospholamban. Biochem J 286(Pt 2):591–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clausen JD, Vandecaetsbeek I, Wuytack F et al (2012) Distinct roles of the C-terminal 11th transmembrane helix and luminal extension in the partial reactions determining the high Ca2+ affinity of sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2b (SERCA2b). J Biol Chem 287:39460–39469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dode L, Andersen JP, Leslie N et al (2003) Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 2 isoforms and characterization of Darier disease (SERCA2) mutants by steady-state and transient kinetic analyses. J Biol Chem 278:47877–47889

    Article  CAS  PubMed  Google Scholar 

  49. Martin V, Bredoux R, Corvazier E et al (2002) Three novel sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 3 isoforms. Expression, regulation, and function of the membranes of the SERCA3 family. J Biol Chem 277:24442–24452

    Article  CAS  PubMed  Google Scholar 

  50. Bobe R, Bredoux R, Corvazier E et al (2004) Identification, expression, function, and localization of a novel (sixth) isoform of the human sarco/endoplasmic reticulum Ca2+ATPase 3 gene. J Biol Chem 279:24297–24306

    Article  CAS  PubMed  Google Scholar 

  51. Michalak M, Groenendyk J, Szabo E et al (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417:651–666

    Article  CAS  PubMed  Google Scholar 

  52. Greene AL, Lalli MJ, Ji Y et al (2000) Overexpression of SERCA2b in the heart leads to an increase in sarcoplasmic reticulum calcium transport function and increased cardiac contractility. J Biol Chem 275:24722–24727

    Article  CAS  PubMed  Google Scholar 

  53. Vangheluwe P, Louch WE, Ver Heyen M et al (2003) Ca2+ transport ATPase isoforms SERCA2a and SERCA2b are targeted to the same sites in the murine heart. Cell Calcium 34:457–464

    Article  CAS  PubMed  Google Scholar 

  54. Lipskaia L, Keuylian Z, Blirando K et al (2014) Expression of sarco (endo) plasmic reticulum calcium ATPase (SERCA) system in normal mouse cardiovascular tissues, heart failure and atherosclerosis. Biochim Biophys Acta 1843:2705–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baksh S, Michalak M (1991) Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem 266:21458–21465

    CAS  PubMed  Google Scholar 

  56. John LM, Lechleiter JD, Camacho P (1998) Differential modulation of SERCA2 isoforms by calreticulin. J Cell Biol 142:963–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roderick HL, Lechleiter JD, Camacho P (2000) Cytosolic phosphorylation of calnexin controls intracellular Ca2+ oscillations via an interaction with SERCA2b. J Cell Biol 149:1235–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu A, Hawkins C, Narayanan N (1993) Phosphorylation and activation of the Ca2+-pumping ATPase of cardiac sarcoplasmic reticulum by Ca2+/calmodulin-dependent protein kinase. J Biol Chem 268:8394–8397

    Google Scholar 

  59. Hawkins C, Xu A, Narayanan N (1994) Sarcoplasmic reticulum calcium pump in cardiac and slow twitch skeletal muscle but not fast twitch skeletal muscle undergoes phosphorylation by endogenous and exogenous Ca2+/calmodulin-dependent protein kinase. Characterization of optimal conditions for calcium pump phosphorylation. J Biol Chem 269:31198–31206

    CAS  PubMed  Google Scholar 

  60. Xu A, Narayanan N (1999) Ca2+/calmodulin-dependent phosphorylation of the Ca2+-ATPase, uncoupled from phospholamban, stimulates Ca2+-pumping in native cardiac sarcoplasmic reticulum. Biochem Biophys Res Commun 258:66–72

    Article  CAS  PubMed  Google Scholar 

  61. Xu A, Netticadan T, Jones DL et al (1999) Serine phosphorylation of the sarcoplasmic reticulum Ca2+-ATPase in the intact beating rabbit heart. Biochem Biophys Res Commun 264:241–246

    Google Scholar 

  62. Rodriguez P, Jackson WA, Colyer J (2004) Critical evaluation of cardiac Ca2+-ATPase phosphorylation on serine 38 using a phosphorylation site-specific antibody. J Biol Chem 279:17111–17119

    Article  CAS  PubMed  Google Scholar 

  63. Reddy LG, Jones LR, Pace RC et al (1996) Purified, reconstituted cardiac Ca2+-ATPase is regulated by phospholamban but not by direct phosphorylation with Ca2+/calmodulin-dependent protein kinase. J Biol Chem 271:14964–14970

    Article  CAS  PubMed  Google Scholar 

  64. Bassani RA, Mattiazzi A, Bers DM (1995) CaMKII is responsible for activity-dependent acceleration of relaxation in rat ventricular myocytes. Am J Physiol 268(2 Pt 2):H703–H712

    CAS  PubMed  Google Scholar 

  65. Zhao W, Uehara Y, Chu G et al (2004) Threonine-17 phosphorylation of phospholamban: a key determinant of frequency-dependent increase of cardiac contractility. J Mol Cell Cardiol 37:607–612

    Article  CAS  PubMed  Google Scholar 

  66. Ireland BS, Brockmeier U, Howe CM et al (2008) Lectin-deficient calreticulin retains full functionality as a chaperone for class I histocompatibility molecules. Mol Biol Cell 19:2413–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Savignac M, Edir A, Simon M et al (2011) Darier disease : a disease model of impaired calcium homeostasis in the skin. Biochim Biophys Acta 1813:1111–1117

    Article  CAS  PubMed  Google Scholar 

  68. Ikeda S, Mayuzumi N, Shigihara T et al (2003) Mutations in ATP2A2 in patients with Darier’s disease. J Invest Dermatol 121:475–477

    Article  CAS  PubMed  Google Scholar 

  69. Ruiz-Perez VL, Carter SA, Healy E et al (1999) ATP2A2 mutations in Darier’s disease: variant cutaneous phenotypes are associated with missense mutations, but neuropsychiatric features are independent of mutation class. Hum Mol Genet 8:1621–1630

    Article  CAS  PubMed  Google Scholar 

  70. Ringpfeil F, Raus A, DiGiovanna JJ et al (2001) Darier disease--novel mutations in ATP2A2 and genotype-phenotype correlation. Exp Dermatol 10:19–27

    Article  CAS  PubMed  Google Scholar 

  71. Sakuntabhai A, Ruiz-Perez V, Carter S et al (1999) Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet 21:271–277

    Article  CAS  PubMed  Google Scholar 

  72. Jacobsen NJ, Lyons I, Hoogendoorn B et al (1999) ATP2A2 mutations in Darier’s disease and their relationship to neuropsychiatric phenotypes. Hum Mol Genet 8:1631–1636

    Article  CAS  PubMed  Google Scholar 

  73. Kaneko M, Desai BS, Cook B (2014) Ionic leakage underlies a gain-of-function effect of dominant disease mutations affecting diverse P-type ATPases. Nat Genet 46:144–151

    Article  CAS  PubMed  Google Scholar 

  74. Periasamy M, Huke S (2001) SERCA pump level is a critical determinant of Ca2+homeostasis and cardiac contractility. J Mol Cell Cardiol 33:1053–1063

    Google Scholar 

  75. Periasamy M, Bhupathy P, Babu GJ (2008) Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res 77:265–273

    Article  CAS  PubMed  Google Scholar 

  76. Ver Heyen M, Heymans S, Antoons G et al (2001) Replacement of the muscle-specific sarcoplasmic reticulum Ca2+-ATPase isoform SERCA2a by the nonmuscle SERCA2b homologue causes mild concentric hypertrophy and impairs contraction-relaxation of the heart. Circ Res 89:838–846

    Article  CAS  PubMed  Google Scholar 

  77. Vangheluwe P, Wuytack F (2011) Improving cardiac Ca2+ transport into the sarcoplasmic reticulum in heart failure: lessons from the ubiquitous SERCA2b Ca+(2) pump. Biochem Soc Trans 39:781–787

    Google Scholar 

  78. Vangheluwe P, Sipido KR, Raeymaekers L et al (2006) New perspectives on the role of SERCA2’s Ca2+ affinity in cardiac function. Biochim Biophys Acta 1763:1216–1228

    Article  CAS  PubMed  Google Scholar 

  79. Vangheluwe P, Tjwa M, Van Den Bergh A et al (2006) A SERCA2 pump with an increased Ca2+ affinity can lead to severe cardiac hypertrophy, stress intolerance and reduced life span. J Mol Cell Cardiol 41:308–317

    Article  CAS  PubMed  Google Scholar 

  80. Anger M, Samuel JL, Marotte F et al (1994) In situ mRNA distribution of sarco(endo)plasmic reticulum Ca2+-ATPase isoforms during ontogeny in the rat. J Mol Cell Cardiol 26:539–550

    Google Scholar 

  81. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577

    Article  CAS  PubMed  Google Scholar 

  82. Kadambi VJ, Ponniah S, Harrer JM et al (1996) Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest 97:533–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Antoons G, Ver Heyen M, Raeymaekers L et al (2003) Ca2+ uptake by the sarcoplasmic reticulum in ventricular myocytes of the SERCA2b/b mouse is impaired at higher Ca2+ loads only. Circ Res 92:881–887

    Article  CAS  PubMed  Google Scholar 

  84. Vandecaetsbeek I, Raeymaekers L, Wuytack F et al (2009) Factors controlling the activity of the SERCA2a pump in the normal and failing heart. Biofactors 35:484–499

    Article  CAS  PubMed  Google Scholar 

  85. del Monte F, Harding SE, Schmidt U et al (1999) Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 100:2308–2311

    Article  PubMed Central  Google Scholar 

  86. Zsebo K, Yaroshinsky A, Rudy JJ et al (2014) Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res 114:101–108

    Article  CAS  PubMed  Google Scholar 

  87. Kranias EG, Hajjar RJ (2012) Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res 110:1646–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Suckau L, Fechner H, Chemaly E et al (2009) Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation 119:1241–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hoshijima M, Ikeda Y, Iwanaga Y et al (2002) Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med 8:864–871

    CAS  PubMed  Google Scholar 

  90. Rudolph HK, Antebi A, Fink GR et al (1989) The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ ATPase family. Cell 58:133–145

    Article  CAS  PubMed  Google Scholar 

  91. Gunteski-Hamblin AM, Clarke DM, Shull GE (1992) Molecular cloning and tissue distribution of alternatively spliced mRNAs encoding possible mammalian homologues of the yeast secretory pathway calcium pump. Biochemistry 31:7600–7608

    Article  CAS  PubMed  Google Scholar 

  92. Wootton LL, Argent CC, Wheatley M et al (2004) The expression, activity and localisation of the secretory pathway Ca2+ -ATPase (SPCA1) in different mammalian tissues. Biochim Biophys Acta 1664:189–197

    Article  CAS  PubMed  Google Scholar 

  93. Vanoevelen J, Dode L, Van Baelen K et al (2005) The secretory pathway Ca2+/Mn2+-ATPase 2 is a Golgi-localized pump with high affinity for Ca2+ ions. J Biol Chem 280:22800–22808

    Article  CAS  PubMed  Google Scholar 

  94. Xiang M, Mohamalawari D, Rao R (2005) A novel isoform of the secretory pathway Ca2+, Mn2+-ATPase, hSPCA2, has unusual properties and is expressed in the brain. J Biol Chem 280:11608–11614

    Google Scholar 

  95. Fairclough RJ, Dode L, Vanoevelen J et al (2003) Effect of Hailey-Hailey disease mutations on the function of a new variant of human secretory pathway Ca2+/Mn2+-ATPase (hSPCA1). J Biol Chem 278:24721–24730

    Article  CAS  PubMed  Google Scholar 

  96. Dode L, Andersen JP, Raeymaekers L et al (2005) Functional comparison between secretory pathway Ca2+/Mn2+-ATPase (SPCA) 1 and sarcoplasmic reticulum Ca2+-ATPase (SERCA) 1 isoforms by steady-state and transient kinetic analyses. J Biol Chem 280:39124–39134

    Article  CAS  PubMed  Google Scholar 

  97. Garside VC, Kowalik AS, Johnson CL et al (2010) MIST1 regulates the pancreatic acinar cell expression of Atp2c2, the gene encoding secretory pathway calcium ATPase 2. Exp Cell Res 316:2859–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wei Y, Chen J, Rosas G et al (2000) Phenotypic screening of mutations in Pmr1, the yeast secretory pathway Ca2+/Mn2+-ATPase, reveals residues critical for ion selectivity and transport. J Biol Chem 275:23927–23932

    Article  CAS  PubMed  Google Scholar 

  99. Wei Y, Marchi V, Wang R et al (1999) An N-terminal EF hand-like motif modulates ion transport by Pmr1, the yeast Golgi Ca2+/Mn2+-ATPase. Biochemistry 38:14534–14541

    Google Scholar 

  100. Van Baelen K, Vanoevelen J, Missiaen L et al (2001) The Golgi PMR1 P-type ATPase of Caenorhabditis elegans. Identification of the gene and demonstration of calcium and manganese transport. J Biol Chem 276:10683–10691

    Article  PubMed  Google Scholar 

  101. Kho C, Lee A, Jeong D et al (2011) SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477:601–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vafiadaki E, Arvanitis DA, Pagakis SN et al (2009) The anti-apoptotic protein HAX-1 interacts with SERCA2 and regulates its protein levels to promote cell survival. Mol Biol Cell 20:306–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li Y, Camacho P (2004) Ca2+-dependent redox modulation of SERCA 2b by ERp57. J Cell Biol 164:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dode L, Andersen JP, Vanoevelen J et al (2006) Dissection of the functional differences between human secretory pathway Ca2+/Mn2+-ATPase (SPCA) 1 and 2 isoenzymes by steady-state and transient kinetic analyses. J Biol Chem 281:3182–3189

    Article  CAS  PubMed  Google Scholar 

  105. Ikura M (1996) Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci 21:14–17

    Article  CAS  PubMed  Google Scholar 

  106. Huster D, Lutsenko S (2003) The distinct roles of the N-terminal copper-binding sites in regulation of catalytic activity of the Wilson’s disease protein. J Biol Chem 278:32212–32218

    Article  CAS  PubMed  Google Scholar 

  107. Van Baelen K, Vanoevelen J, Callewaert G et al (2003) The contribution of the SPCA1 Ca2+ pump to the Ca2+ accumulation in the Golgi apparatus of HeLa cells assessed via RNA-mediated interference. Biochem Biophys Res Commun 306:430–436

    Article  PubMed  CAS  Google Scholar 

  108. Leitch S, Feng M, Muend S et al (2011) Vesicular distribution of Secretory Pathway Ca2+-ATPase isoform 1 and a role in manganese detoxification in liver-derived polarized cells. Biometals 24:159–170

    Google Scholar 

  109. Micaroni M, Perinetti G, Berrie CP et al (2010) The SPCA1 Ca2+ pump and intracellular membrane trafficking. Traffic 11:1315–1333

    Article  CAS  PubMed  Google Scholar 

  110. Lewis RS (2007) The molecular choreography of a store-operated calcium channel. Nature 446:284–287

    Article  CAS  PubMed  Google Scholar 

  111. Feng M, Grice DM, Faddy HM et al (2010) Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell 143:84–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cross BM, Breitwieser GE, Reinhardt TA et al (2014) Cellular calcium dynamics in lactation and breast cancer: from physiology to pathology. Am J Physiol Cell Physiol 306:C515–C526

    Article  CAS  PubMed  Google Scholar 

  113. Hu Z, Bonifas JM, Beech J et al (2000) Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease. Nat Genet 24:61–65

    Article  CAS  PubMed  Google Scholar 

  114. Prasad V, Boivin GP, Miller ML et al (2005) Haploinsufficiency of Atp2a2, encoding the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 Ca2+ pump, predisposes mice to squamous cell tumors via a novel mode of cancer susceptibility. Cancer Res 65:8655–8661

    Article  CAS  PubMed  Google Scholar 

  115. Okunade GW, Miller ML, Azhar M et al (2007) Loss of the Atp2c1 secretory pathway Ca2+-ATPase (SPCA1) in mice causes Golgi stress, apoptosis, and midgestational death in homozygous embryos and squamous cell tumors in adult heterozygotes. J Biol Chem 282:26517–26527

    Google Scholar 

  116. Neville MC (2005) Calcium secretion into milk. J Mammary Gland Biol Neoplasia 10:119–128

    Article  PubMed  Google Scholar 

  117. Cross BM, Hack A, Reinhardt TA et al (2013) SPCA2 regulates Orai1 trafficking and store independent Ca2+ entry in a model of lactation. PLoS One 8, e67348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. McAndrew D, Grice DM, Peters AA et al (2011) ORAI1-mediated calcium influx in lactation and in breast cancer. Mol Cancer Ther 10:448–460

    Article  CAS  PubMed  Google Scholar 

  119. Reinhardt TA, Lippolis JD, Shull GE et al (2004) Null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2 impairs calcium transport into milk. J Biol Chem 279:42369–42373

    Article  CAS  PubMed  Google Scholar 

  120. Faddy HM, Smart CE, Xu R et al (2008) Localization of plasma membrane and secretory calcium pumps in the mammary gland. Biochem Biophys Res Commun 369:977–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang S, Zhang JJ, Huang XY (2009) Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15:124–134

    Article  CAS  PubMed  Google Scholar 

  122. Grice DM, Vetter I, Faddy HM et al (2010) Golgi calcium pump secretory pathway calcium ATPase 1 (SPCA1) is a key regulator of insulin-like growth factor receptor (IGF1R) processing in the basal-like breast cancer cell line MDA-MB-231. J Biol Chem 285:37458–37466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Monteith GR, Davis FM, Roberts-Thomson SJ (2012) Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 287:31666–31673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378

    Article  CAS  PubMed  Google Scholar 

  125. Schatzmann HJ (1966) ATP-dependent Ca++-extrusion from human red cells. Experientia 22:364–365

    Article  CAS  PubMed  Google Scholar 

  126. Niggli V, Penniston JT, Carafoli E (1979) Purification of the (Ca2+-Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem 254:9955–9958

    CAS  PubMed  Google Scholar 

  127. Penniston JT, Enyedi A (1998) Modulation of the plasma membrane Ca2+ pump. J Membr Biol 165:101–109

    Article  CAS  PubMed  Google Scholar 

  128. Carafoli E (1994) Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J 8:993–1002

    CAS  PubMed  Google Scholar 

  129. Falchetto R, Vorherr T, Carafoli E (1992) The calmodulin-binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci 1:1613–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Keeton TP, Burk SE, Shull GE (1993) Alternative splicing of exons encoding the calmodulin-binding domains and C termini of plasma membrane Ca2+-ATPase isoforms 1, 2, 3, and 4. J Biol Chem 268:2740–2748

    Google Scholar 

  131. Stauffer TP, Guerini D, Carafoli E (1995) Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. A study using specific antibodies. J Biol Chem 270:12184–12190

    Article  CAS  PubMed  Google Scholar 

  132. Enyedi A, Filoteo AG, Gardos G et al (1991) Calmodulin-binding domains from isozymes of the plasma membrane Ca2+ pump have different regulatory properties. J Biol Chem 266:8952–8956

    CAS  PubMed  Google Scholar 

  133. Caride AJ, Filoteo AG, Penheiter AR et al (2001) Delayed activation of the plasma membrane calcium pump by a sudden increase in Ca2+: fast pumps reside in fast cells. Cell Calcium 30:49–57

    Article  CAS  PubMed  Google Scholar 

  134. Hill JK, Williams DE, LeMasurier M et al (2006) Splice-site A choice targets plasma-membrane Ca2+-ATPase isoform 2 to hair bundles. J Neurosci 26:6172–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81:21–50

    CAS  PubMed  Google Scholar 

  136. Okunade GW, Miller ML, Pyne GJ et al (2004) Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem 279:33742–33750

    Article  CAS  PubMed  Google Scholar 

  137. Ficarella R, Di Leva F, Bortolozzi M et al (2007) A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness. Proc Natl Acad Sci U S A 104:1516–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lopreiato R, Giacomello M, Carafoli E (2014) The plasma membrane calcium pump: new ways to look at an old enzyme. J Biol Chem 289:10261–10268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Brini M, Cali T, Ottolini D et al (2013) The plasma membrane calcium pump in health and disease. FEBS J 280:5385–5397

    Article  CAS  PubMed  Google Scholar 

  140. Cartwright EJ, Oceandy D, Neyses L (2009) Physiological implications of the interaction between the plasma membrane calcium pump and nNOS. Pflugers Arch 457:665–671

    Article  CAS  PubMed  Google Scholar 

  141. Adamo HP, Penniston JT (1992) New Ca2+ pump isoforms generated by alternative splicing of rPMCA2 mRNA. Biochem J 283(Pt 2):355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hilfiker H, Guerini D, Carafoli E (1994) Cloning and expression of isoform 2 of the human plasma membrane Ca2+ ATPase. Functional properties of the enzyme and its splicing products. J Biol Chem 269:26178–26183

    CAS  PubMed  Google Scholar 

  143. Lotersztajn S, Pavoine C, Deterre P et al (1992) Role of G protein beta gamma subunits in the regulation of the plasma membrane Ca2+ pump. J Biol Chem 267:2375–2379

    CAS  PubMed  Google Scholar 

  144. Chicka MC, Strehler EE (2003) Alternative splicing of the first intracellular loop of plasma membrane Ca2+-ATPase isoform 2 alters its membrane targeting. J Biol Chem 278:18464–18470

    Article  CAS  PubMed  Google Scholar 

  145. Strehler EE (2013) Plasma membrane calcium ATPases as novel candidates for therapeutic agent development. J Pharm Pharm Sci 16:190–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chiesi M, Vorherr T, Falchetto R et al (1991) Phospholamban is related to the autoinhibitory domain of the plasma membrane Ca2+-pumping ATPase. Biochemistry 30:7978–7983

    Google Scholar 

  147. Elwess NL, Filoteo AG, Enyedi A et al (1997) Plasma membrane Ca2+ pump isoforms 2a and 2b are unusually responsive to calmodulin and Ca2+. J Biol Chem 272:17981–17986

    Article  CAS  PubMed  Google Scholar 

  148. VanHouten JN, Neville MC, Wysolmerski JJ (2007) The calcium-sensing receptor regulates plasma membrane calcium adenosine triphosphatase isoform 2 activity in mammary epithelial cells: a mechanism for calcium-regulated calcium transport into milk. Endocrinology 148:5943–5954

    Article  CAS  PubMed  Google Scholar 

  149. Antalffy G, Mauer AS, Paszty K et al (2012) Plasma membrane calcium pump (PMCA) isoform 4 is targeted to the apical membrane by the w-splice insert from PMCA2. Cell Calcium 51:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Xiong Y, Antalffy G, Enyedi A et al (2009) Apical localization of PMCA2w/b is lipid raft-dependent. Biochem Biophys Res Commun 384:32–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Enyedi A, Strehler EE (2011) Regulation of apical membrane enrichment and retention of plasma membrane Ca ATPase splice variants by the PDZ-domain protein NHERF2. Commun Integr Biol 4:340–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fujimoto T (1993) Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120:1147–1157

    Article  CAS  PubMed  Google Scholar 

  153. Schnitzer JE, Oh P, Jacobson BS et al (1995) Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca2+-ATPase, and inositol trisphosphate receptor. Proc Natl Acad Sci U S A 92:1759–1763

    Google Scholar 

  154. Sepulveda MR, Berrocal-Carrillo M, Gasset M et al (2006) The plasma membrane Ca2+-ATPase isoform 4 is localized in lipid rafts of cerebellum synaptic plasma membranes. J Biol Chem 281:447–453

    Article  CAS  PubMed  Google Scholar 

  155. El-Yazbi AF, Cho WJ, Schulz R et al (2008) Calcium extrusion by plasma membrane calcium pump is impaired in caveolin-1 knockout mouse small intestine. Eur J Pharmacol 591:80–87

    Article  CAS  PubMed  Google Scholar 

  156. James P, Maeda M, Fischer R et al (1988) Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes. J Biol Chem 263:2905–2910

    CAS  PubMed  Google Scholar 

  157. Enyedi A, Vorherr T, James P et al (1989) The calmodulin binding domain of the plasma membrane Ca2+ pump interacts both with calmodulin and with another part of the pump. J Biol Chem 264:12313–12321

    CAS  PubMed  Google Scholar 

  158. Corradi GR, Adamo HP (2007) Intramolecular fluorescence resonance energy transfer between fused autofluorescent proteins reveals rearrangements of the N- and C-terminal segments of the plasma membrane Ca2+ pump involved in the activation. J Biol Chem 282:35440–35448

    Article  CAS  PubMed  Google Scholar 

  159. Niggli V, Adunyah ES, Penniston JT et al (1981) Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem 256:395–401

    CAS  PubMed  Google Scholar 

  160. Tidow H, Poulsen LR, Andreeva A et al (2012) A bimodular mechanism of calcium control in eukaryotes. Nature 491:468–472

    Article  CAS  PubMed  Google Scholar 

  161. Verma AK, Enyedi A, Filoteo AG et al (1996) Plasma membrane calcium pump isoform 4a has a longer calmodulin-binding domain than 4b. J Biol Chem 271:3714–3718

    Article  CAS  PubMed  Google Scholar 

  162. Verma AK, Paszty K, Filoteo AG et al (1999) Protein kinase C phosphorylates plasma membrane Ca2+ pump isoform 4a at its calmodulin binding domain. J Biol Chem 274:527–531

    Article  CAS  PubMed  Google Scholar 

  163. Filoteo AG, Enyedi A, Verma AK et al (2000) Plasma membrane Ca2+ pump isoform 3f is weakly stimulated by calmodulin. J Biol Chem 275:4323–4328

    Google Scholar 

  164. Enyedi A, Verma AK, Heim R et al (1994) The Ca2+ affinity of the plasma membrane Ca2+ pump is controlled by alternative splicing. J Biol Chem 269:41–43

    CAS  PubMed  Google Scholar 

  165. Caride AJ, Elwess NL, Verma AK et al (1999) The rate of activation by calmodulin of isoform 4 of the plasma membrane Ca2+ pump is slow and is changed by alternative splicing. J Biol Chem 274:35227–35232

    Article  CAS  PubMed  Google Scholar 

  166. Foder B, Scharff O (1992) Solitary calcium spike dependent on calmodulin and plasma membrane Ca2+ pump. Cell Calcium 13:581–591

    Article  CAS  PubMed  Google Scholar 

  167. Anderson RG (1993) Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci U S A 90:10909–10913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. DeMarco SJ, Strehler EE (2001) Plasma membrane Ca2+-ATPase isoforms 2b and 4b interact promiscuously and selectively with members of the membrane-associated guanylate kinase family of PDZ (PSD95/Dlg/ZO-1) domain-containing proteins. J Biol Chem 276:21594–21600

    Article  CAS  PubMed  Google Scholar 

  169. Schuh K, Uldrijan S, Gambaryan S et al (2003) Interaction of the plasma membrane Ca2+ pump 4b/CI with the Ca2+/calmodulin-dependent membrane-associated kinase CASK. J Biol Chem 278:9778–9783

    Article  CAS  PubMed  Google Scholar 

  170. DeMarco SJ, Chicka MC, Strehler EE (2002) Plasma membrane Ca2+ ATPase isoform 2b interacts preferentially with Na+/H+ exchanger regulatory factor 2 in apical plasma membranes. J Biol Chem 277:10506–10511

    Article  CAS  PubMed  Google Scholar 

  171. Bozulic LD, Malik MT, Powell DW et al (2007) Plasma membrane Ca2+-ATPase associates with CLP36, alpha-actinin and actin in human platelets. Thromb Haemost 97:587–597

    Google Scholar 

  172. Goellner GM, DeMarco SJ, Strehler EE (2003) Characterization of PISP, a novel single-PDZ protein that binds to all plasma membrane Ca2+-ATPase b-splice variants. Ann N Y Acad Sci 986:461–471

    Article  CAS  PubMed  Google Scholar 

  173. Sgambato-Faure V, Xiong Y, Berke JD et al (2006) The Homer-1 protein Ania-3 interacts with the plasma membrane calcium pump. Biochem Biophys Res Commun 343:630–637

    Article  CAS  PubMed  Google Scholar 

  174. James P, Vorherr T, Krebs J et al (1989) Modulation of erythrocyte Ca2+-ATPase by selective calpain cleavage of the calmodulin-binding domain. J Biol Chem 264:8289–8296

    CAS  PubMed  Google Scholar 

  175. Guerini D, Pan B, Carafoli E (2003) Expression, purification, and characterization of isoform 1 of the plasma membrane Ca2+ pump: focus on calpain sensitivity. J Biol Chem 278:38141–38148

    Article  CAS  PubMed  Google Scholar 

  176. Schwab BL, Guerini D, Didszun C et al (2002) Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ 9:818–831

    Article  CAS  PubMed  Google Scholar 

  177. Paszty K, Verma AK, Padanyi R et al (2002) Plasma membrane Ca2+ATPase isoform 4b is cleaved and activated by caspase-3 during the early phase of apoptosis. J Biol Chem 277:6822–6829

    Article  CAS  PubMed  Google Scholar 

  178. Fu H, Subramanian RR, Masters SC (2000) 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617–647

    Article  CAS  PubMed  Google Scholar 

  179. Linde CI, Di Leva F, Domi T et al (2008) Inhibitory interaction of the 14-3-3 proteins with ubiquitous (PMCA1) and tissue-specific (PMCA3) isoforms of the plasma membrane Ca2+ pump. Cell Calcium 43:550–561

    Article  CAS  PubMed  Google Scholar 

  180. Rimessi A, Coletto L, Pinton P et al (2005) Inhibitory interaction of the 14-3-3{epsilon} protein with isoform 4 of the plasma membrane Ca2+-ATPase pump. J Biol Chem 280:37195–37203

    Google Scholar 

  181. Niggli V, Adunyah ES, Carafoli E (1981) Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+—ATPase. J Biol Chem 256:8588–8592

    CAS  PubMed  Google Scholar 

  182. Missiaen L, Raeymaekers L, Wuytack F et al (1989) Phospholipid-protein interactions of the plasma-membrane Ca2+-transporting ATPase. Evidence for a tissue-dependent functional difference. Biochem J 263:687–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Enyedi A, Flura M, Sarkadi B et al (1987) The maximal velocity and the calcium affinity of the red cell calcium pump may be regulated independently. J Biol Chem 262:6425–6430

    CAS  PubMed  Google Scholar 

  184. Khan I, Grover AK (1991) Expression of cyclic-nucleotide-sensitive and -insensitive isoforms of the plasma membrane Ca2+ pump in smooth muscle and other tissues. Biochem J 277(Pt 2):345–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bruce JI, Yule DI, Shuttleworth TJ (2002) Ca2+-dependent protein kinase--a modulation of the plasma membrane Ca2+-ATPase in parotid acinar cells. J Biol Chem 277:48172–48181

    Article  CAS  PubMed  Google Scholar 

  186. Enyedi A, Elwess NL, Filoteo AG et al (1997) Protein kinase C phosphorylates the “a” forms of plasma membrane Ca2+ pump isoforms 2 and 3 and prevents binding of calmodulin. J Biol Chem 272:27525–27528

    Article  CAS  PubMed  Google Scholar 

  187. Giacomello M, De Mario A, Scarlatti C et al (2013) Plasma membrane calcium ATPases and related disorders. Int J Biochem Cell Biol 45:753–762

    Article  CAS  PubMed  Google Scholar 

  188. Reinhardt TA, Filoteo AG, Penniston JT et al (2000) Ca2+-ATPase protein expression in mammary tissue. Am J Physiol Cell Physiol 279:C1595–C1602

    Google Scholar 

  189. VanHouten J, Sullivan C, Bazinet C et al (2010) PMCA2 regulates apoptosis during mammary gland involution and predicts outcome in breast cancer. Proc Natl Acad Sci U S A 107:11405–11410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kozel PJ, Friedman RA, Erway LC et al (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J Biol Chem 273:18693–18696

    Article  CAS  PubMed  Google Scholar 

  191. Street VA, McKee-Johnson JW, Fonseca RC et al (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394

    Article  CAS  PubMed  Google Scholar 

  192. Takahashi K, Kitamura K (1999) A point mutation in a plasma membrane Ca2+-ATPase gene causes deafness in Wriggle Mouse Sagami. Biochem Biophys Res Commun 261:773–778

    Google Scholar 

  193. Zanni G, Cali T, Kalscheuer VM et al (2012) Mutation of plasma membrane Ca2+ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc Natl Acad Sci U S A 109:14514–14519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Schuh K, Cartwright EJ, Jankevics E et al (2004) Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem 279:28220–28226

    Article  CAS  PubMed  Google Scholar 

  196. Mohamed TM, Oceandy D, Zi M et al (2011) Plasma membrane calcium pump (PMCA4)-neuronal nitric-oxide synthase complex regulates cardiac contractility through modulation of a compartmentalized cyclic nucleotide microdomain. J Biol Chem 286:41520–41529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hammes A, Oberdorf-Maass S, Rother T et al (1998) Overexpression of the sarcolemmal calcium pump in the myocardium of transgenic rats. Circ Res 83:877–888

    Article  CAS  PubMed  Google Scholar 

  198. Winther AM, Bublitz M, Karlsen JL et al (2013) The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm. Nature 495:265–269

    Article  CAS  PubMed  Google Scholar 

  199. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Arnold K, Bordoli L, Kopp J et al (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Flanders Research Foundation FWO G.0442.12 and G.0B11.15, the Inter-University Attraction Poles program (P7/13), and the KU Leuven (OT/13/091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vangheluwe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, J., Smaardijk, S., Vandecaetsbeek, I., Vangheluwe, P. (2016). Regulation of Ca2+ Transport ATPases by Amino- and Carboxy-Terminal Extensions: Mechanisms and (Patho)Physiological Implications. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Advances in Biochemistry in Health and Disease, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-24780-9_14

Download citation

Publish with us

Policies and ethics