Skip to main content

Regulation of Cardiac Sarco(endo)plasmic Reticulum Calcium-ATPases (SERCA2a) in Response to Exercise

  • Chapter
  • First Online:
Regulation of Ca2+-ATPases,V-ATPases and F-ATPases

Abstract

Sarco(endo)plasmic reticulum calcium ATPase (SERCA2a) plays an integral role in Ca2+ cycling in the heart. After a myocardial contraction has occurred, SERCA2a is primarily responsible for transporting Ca2+ out of the cytosol into the sarcoplasmic reticulum. Consequently, SERCA2a is key in determining relaxation time and inotropy of subsequent contractions. There are ten different SERCA isoforms in the body, where SERCA2a is the isoform expressed in the heart. Both SERCA2a expression and activity are reduced in models of disease. As such, a large body of research has examined SERCA2a and how it might be used as a means to restore heart function in models of disease. In this chapter, we examine various regulatory mechanisms of SERCA2a and how these mechanisms affect SERCA2a and cardiac function. Transcriptional, protein (e.g., phospholamban and sarcolipin), hormonal (e.g., thyroid hormone and adiponectin), and posttranslational modification (e.g., nitration, glutathionylation, SUMOylation, acetylation, glycosylation, and O-glcNAcylation) processes as they regulate SERCA2a are discussed. Additionally, exercise and its effect on the regulatory mechanisms of SERCA2a is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  CAS  PubMed  Google Scholar 

  2. Lodish H, Berk A, Zipursky SL et al (2000) Molecular cell biology, 4th edn. W. H Freeman, San Francisco, CA

    Google Scholar 

  3. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–C14

    CAS  PubMed  Google Scholar 

  4. Bers DM (1997) Ca transport during contraction and relaxation in mammalian ventricular muscle. Basic Res Cardiol 92(Suppl 1):1–10

    Article  CAS  PubMed  Google Scholar 

  5. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577

    Article  CAS  PubMed  Google Scholar 

  6. Tran K, Smith NP, Loiselle DS, Crampin EJ (2009) A thermodynamic model of the cardiac sarcoplasmic/endoplasmic Ca(2+) (SERCA) pump. Biophys J 96:2029–2042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Martonosi AN, Pikula S (2003) The structure of the Ca2+-ATPase of sarcoplasmic reticulum. Acta Biochim Pol 50:337–365

    CAS  PubMed  Google Scholar 

  8. Sacchetto R, Bertipaglia I, Giannetti S et al (2012) Crystal structure of sarcoplasmic reticulum Ca2+-ATPase (SERCA) from bovine muscle. J Struct Biol 178:38–44

    Article  CAS  PubMed  Google Scholar 

  9. Wuytack F, Raeymaekers L, Missiaen L (2002) Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 32:279–305

    Article  CAS  PubMed  Google Scholar 

  10. Toyoshima C, Inesi G (2004) Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73:269–292

    Article  CAS  PubMed  Google Scholar 

  11. Kawase Y, Hajjar RJ (2008) The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. Nat Clin Pract Cardiovasc Med 5:554–565

    Article  CAS  PubMed  Google Scholar 

  12. Gélébart P, Martin V, Enouf J, Papp B (2003) Identification of a new SERCA2 splice variant regulated during monocytic differentiation. Biochem Biophys Res Commun 303:676–684

    Article  CAS  PubMed  Google Scholar 

  13. Otsu K, Fujii J, Periasamy M et al (1993) Chromosome mapping of five human cardiac and skeletal muscle sarcoplasmic reticulum protein genes. Genomics 17:507–509

    Article  CAS  PubMed  Google Scholar 

  14. Loukianov E, Ji Y, Baker DL et al (1998) Sarco(endo)plasmic reticulum Ca2+ ATPase isoforms and their role in muscle physiology and pathology. Ann N Y Acad Sci 853:251–259

    Article  CAS  PubMed  Google Scholar 

  15. Van den Bosch L, Eggermont J, De Smedt H et al (1994) Regulation of splicing is responsible for the expression of the muscle-specific 2a isoform of the sarco/endoplasmic-reticulum Ca(2+)-ATPase. Biochem J 302(Pt 2):559–566

    Article  PubMed Central  PubMed  Google Scholar 

  16. Watanabe A, Arai M, Koitabashi N et al (2011) Mitochondrial transcription factors TFAM and TFB2M regulate Serca2 gene transcription. Cardiovasc Res 90:57–67

    Article  CAS  PubMed  Google Scholar 

  17. Choi YS, Kim S, Pak YK (2001) Mitochondrial transcription factor A (mtTFA) and diabetes. Diabetes Res Clin Pract 54(Suppl 2):S3–S9

    Article  CAS  PubMed  Google Scholar 

  18. Ikeuchi M, Matsusaka H, Kang D et al (2005) Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation 112:683–690

    Article  CAS  PubMed  Google Scholar 

  19. Baker DL, Dave V, Reed T, Periasamy M (1996) Multiple Sp1 binding sites in the cardiac/slow twitch muscle sarcoplasmic reticulum Ca-ATPase gene promoter Are required for expression in Sol8 muscle cells. J Biol Chem 271:5921–5928

    Article  CAS  PubMed  Google Scholar 

  20. Flesch M (2001) On the trail of cardiac specific transcription factors. Cardiovasc Res 50:3–6

    Article  CAS  PubMed  Google Scholar 

  21. Takizawa T, Arai M, Tomaru K et al (2003) Transcription factor Sp1 regulates SERCA2 gene expression in pressure-overloaded hearts: a study using in vivo direct gene transfer into living myocardium. J Mol Cell Cardiol 35:777–783

    Article  CAS  PubMed  Google Scholar 

  22. Zarain-Herzberg A, Fragoso-Medina J, Estrada-Avilés R (2011) Calcium-regulated transcriptional pathways in the normal and pathologic heart. IUBMB Life 63:847–855

    Article  CAS  PubMed  Google Scholar 

  23. Vlasblom R, Muller A, Musters RJP et al (2004) Contractile arrest reveals calcium-dependent stimulation of SERCA2a mRNA expression in cultured ventricular cardiomyocytes. Cardiovasc Res 63:537–544

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Z-Y, Liu X-H, Hu W-C et al (2010) The calcineurin-myocyte enhancer factor 2c pathway mediates cardiac hypertrophy induced by endoplasmic reticulum stress in neonatal rat cardiomyocytes. Am J Physiol Heart Circ Physiol 298:H1499–H1509

    Article  CAS  PubMed  Google Scholar 

  25. Cortés R, Rivera M, Roselló-Lletí E et al (2012) Differences in MEF2 and NFAT transcriptional pathways according to human heart failure aetiology. PLoS One 7, e30915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Razeghi P, Young ME, Cockrill TC et al (2002) Downregulation of myocardial myocyte enhancer factor 2C and myocyte enhancer factor 2C-regulated gene expression in diabetic patients with nonischemic heart failure. Circulation 106:407–411

    Article  CAS  PubMed  Google Scholar 

  27. Kumarswamy R, Lyon AR, Volkmann I et al (2012) SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur Heart J 33:1067–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wahlquist C, Jeong D, Rojas-Muñoz A et al (2014) Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508:531–535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Boštjančič E, Zidar N, Glavač D (2012) MicroRNAs and cardiac sarcoplasmic reticulum calcium ATPase-2 in human myocardial infarction: expression and bioinformatic analysis. BMC Genomics 13:552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Earls LR, Fricke RG, Yu J et al (2012) Age-dependent microRNA control of synaptic plasticity in 22q11 deletion syndrome and schizophrenia. J Neurosci Off J Soc Neurosci 32:14132–14144

    Article  CAS  Google Scholar 

  31. Gurha P, Abreu-Goodger C, Wang T et al (2012) Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction. Circulation 125:2751–2761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Handy DE, Castro R, Loscalzo J (2011) Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation 123:2145–2156

    Article  PubMed Central  PubMed  Google Scholar 

  33. Angrisano T, Schiattarella GG, Keller S et al (2014) Epigenetic switch at atp2a2 and myh7 gene promoters in pressure overload-induced heart failure. PLoS One 9, e106024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Haddad R, Kasneci A, Sebag IA, Chalifour LE (2013) Cardiac structure/function, protein expression, and DNA methylation are changed in adult female mice exposed to diethylstilbestrol in utero. Can J Physiol Pharmacol 91:741–749

    Article  CAS  PubMed  Google Scholar 

  35. Arai M, Alpert NR, MacLennan DH et al (1993) Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72:463–469

    Article  CAS  PubMed  Google Scholar 

  36. Mercadier JJ, Lompré AM, Duc P et al (1990) Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 85:305–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Park WJ, Oh JG (2013) SERCA2a: a prime target for modulation of cardiac contractility during heart failure. BMB Rep 46:237–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Aronson D, Krum H (2012) Novel therapies in acute and chronic heart failure. Pharmacol Ther 135:1–17

    Article  CAS  PubMed  Google Scholar 

  39. Hasenfuss G (1998) Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res 37:279–289

    Article  CAS  PubMed  Google Scholar 

  40. Moltzau LR, Aronsen JM, Meier S et al (2013) SERCA2 activity is involved in the CNP-mediated functional responses in failing rat myocardium. Br J Pharmacol 170:366–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Epp RA, Susser SE, Morissette MP et al (2013) Exercise training prevents the development of cardiac dysfunction in the low-dose streptozotocin diabetic rats fed a high-fat diet. Can J Physiol Pharmacol 91:80–89

    Article  CAS  PubMed  Google Scholar 

  42. Vasanji Z, Dhalla NS, Netticadan T (2004) Increased inhibition of SERCA2 by phospholamban in the type I diabetic heart. Mol Cell Biochem 261:245–249

    Article  CAS  PubMed  Google Scholar 

  43. Sulaiman M, Matta MJ, Sunderesan NR et al (2010) Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 298:H833–H843

    Article  CAS  PubMed  Google Scholar 

  44. Suarez J, Scott B, Dillmann WH (2008) Conditional increase in SERCA2a protein is able to reverse contractile dysfunction and abnormal calcium flux in established diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol 295:R1439–R1445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Loukianov E, Ji Y, Grupp IL et al (1998) Enhanced myocardial contractility and increased Ca2+ transport function in transgenic hearts expressing the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. Circ Res 83:889–897

    Article  CAS  PubMed  Google Scholar 

  46. Kalyanasundaram A, Lacombe VA, Belevych AE et al (2013) Up-regulation of sarcoplasmic reticulum Ca(2+) uptake leads to cardiac hypertrophy, contractile dysfunction and early mortality in mice deficient in CASQ2. Cardiovasc Res 98:297–306

    Article  CAS  PubMed  Google Scholar 

  47. del Monte F, Harding SE, Schmidt U et al (1999) Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 100:2308–2311

    Article  PubMed Central  Google Scholar 

  48. Jessup M, Greenberg B, Mancini D et al (2011) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID) a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124:304–313

    Article  CAS  PubMed  Google Scholar 

  49. Zsebo K, Yaroshinsky A, Rudy JJ et al (2014) Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res 114:101–108

    Article  CAS  PubMed  Google Scholar 

  50. Bhupathy P, Babu GJ, Periasamy M (2007) Sarcolipin and phospholamban as regulators of cardiac sarcoplasmic reticulum Ca2+ ATPase. J Mol Cell Cardiol 42:903–911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Periasamy M, Bhupathy P, Babu GJ (2008) Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res 77:265–273

    Article  CAS  PubMed  Google Scholar 

  52. Levitzki A (1988) From epinephrine to cyclic AMP. Science 241:800–806

    Article  CAS  PubMed  Google Scholar 

  53. Koss KL, Ponniah S, Jones WK et al (1995) Differential phospholamban gene expression in murine cardiac compartments. Molecular and physiological analyses. Circ Res 77:342–353

    Article  CAS  PubMed  Google Scholar 

  54. Luo W, Grupp IL, Harrer J et al (1994) Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res 75:401–409

    Article  CAS  PubMed  Google Scholar 

  55. Bokník P, Unkel C, Kirchhefer U et al (1999) Regional expression of phospholamban in the human heart. Cardiovasc Res 43:67–76

    Article  PubMed  Google Scholar 

  56. Netticadan T, Temsah R, Osada M, Dhalla NS (1999) Status of Ca2+/calmodulin protein kinase phosphorylation of cardiac SR proteins in ischemia-reperfusion. Am J Physiol 277:C384–C391

    CAS  PubMed  Google Scholar 

  57. Ramila KC, Jong CJ, Pastukh VM et al (2015) Role of protein phosphorylation in excitation-contraction coupling in taurine deficient hearts. Am J Physiol Heart Circ Physiol 308(3):H232–H239, ajpheart.00497.2014

    Article  CAS  PubMed  Google Scholar 

  58. Asahi M, Kurzydlowski K, Tada M, MacLennan DH (2002) Sarcolipin inhibits polymerization of phospholamban to induce superinhibition of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs). J Biol Chem 277:26725–26728

    Article  CAS  PubMed  Google Scholar 

  59. Asahi M, Sugita Y, Kurzydlowski K et al (2003) Sarcolipin regulates sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by binding to transmembrane helices alone or in association with phospholamban. Proc Natl Acad Sci U S A 100:5040–5045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Babu GJ, Zheng Z, Natarajan P et al (2005) Overexpression of sarcolipin decreases myocyte contractility and calcium transient. Cardiovasc Res 65:177–186

    Article  CAS  PubMed  Google Scholar 

  61. Sahoo SK, Shaikh SA, Sopariwala DH et al (2013) Sarcolipin protein interaction with sarco(endo)plasmic reticulum Ca2+ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin Can promote uncoupling of the SERCA pump. J Biol Chem 288:6881–6889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Zvaritch E, Backx PH, Jirik F et al (2000) The transgenic expression of highly inhibitory monomeric forms of phospholamban in mouse heart impairs cardiac contractility. J Biol Chem 275:14985–14991

    Article  CAS  PubMed  Google Scholar 

  63. Gramolini AO, Trivieri MG, Oudit GY et al (2006) Cardiac-specific overexpression of sarcolipin in phospholamban null mice impairs myocyte function that is restored by phosphorylation. Proc Natl Acad Sci U S A 103:2446–2451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Minamisawa S, Wang Y, Chen J et al (2003) Atrial chamber-specific expression of sarcolipin is regulated during development and hypertrophic remodeling. J Biol Chem 278:9570–9575

    Article  CAS  PubMed  Google Scholar 

  65. Bal NC, Maurya SK, Sopariwala DH et al (2012) Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 18:1575–1579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Novitzky D, Cooper DKC (2014) Thyroid hormone and the stunned myocardium. J Endocrinol 223:R1–R8

    Article  CAS  PubMed  Google Scholar 

  67. Chang KC, Figueredo VM, Schreur JH et al (1997) Thyroid hormone improves function and Ca2+ handling in pressure overload hypertrophy. Association with increased sarcoplasmic reticulum Ca2+-ATPase and alpha-myosin heavy chain in rat hearts. J Clin Invest 100:1742–1749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Kimura Y, Otsu K, Nishida K et al (1994) Thyroid hormone enhances Ca2+ pumping activity of the cardiac sarcoplasmic reticulum by increasing Ca2+ ATPase and decreasing phospholamban expression. J Mol Cell Cardiol 26:1145–1154

    Article  CAS  PubMed  Google Scholar 

  69. Kiss E, Jakab G, Kranias EG, Edes I (1994) Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ Res 75:245–251

    Article  CAS  PubMed  Google Scholar 

  70. Nagai R, Zarain-Herzberg A, Brandl CJ et al (1989) Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci U S A 86:2966–2970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Rohrer D, Dillmann WH (1988) Thyroid hormone markedly increases the mRNA coding for sarcoplasmic reticulum Ca2+-ATPase in the rat heart. J Biol Chem 263:6941–6944

    CAS  PubMed  Google Scholar 

  72. Hartong R, Wang N, Kurokawa R et al (1994) Delineation of three different thyroid hormone-response elements in promoter of rat sarcoplasmic reticulum Ca2+ATPase gene. Demonstration that retinoid X receptor binds 5′ to thyroid hormone receptor in response element 1. J Biol Chem 269:13021–13029

    CAS  PubMed  Google Scholar 

  73. Reed TD, Babu GJ, Ji Y et al (2000) The expression of SR calcium transport ATPase and the Na(+)/Ca(2+)Exchanger are antithetically regulated during mouse cardiac development and in Hypo/hyperthyroidism. J Mol Cell Cardiol 32:453–464

    Article  CAS  PubMed  Google Scholar 

  74. Guo J, Bian Y, Bai R et al (2013) Globular adiponectin attenuates myocardial ischemia/reperfusion injury by upregulating endoplasmic reticulum Ca2+-ATPase activity and inhibiting endoplasmic reticulum stress. J Cardiovasc Pharmacol 62:143–153

    Article  CAS  PubMed  Google Scholar 

  75. Pischon T, Girman CJ, Hotamisligil GS et al (2004) Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 291:1730–1737

    Article  CAS  PubMed  Google Scholar 

  76. Villarreal-Molina MT, Antuna-Puente B (2012) Adiponectin: anti-inflammatory and cardioprotective effects. Biochimie 94:2143–2149

    Article  CAS  PubMed  Google Scholar 

  77. Safwat Y, Yassin N, Gamal El Din M, Kassem L (2013) Modulation of skeletal muscle performance and SERCA by exercise and adiponectin gene therapy in insulin-resistant rat. DNA Cell Biol 32:378–385

    Article  CAS  PubMed  Google Scholar 

  78. Boddu NJ, Theus S, Luo S et al (2014) Is the lack of adiponectin associated with increased ER/SR stress and inflammation in the heart? Adipocyte 3:10–18

    Article  PubMed  Google Scholar 

  79. Lokuta AJ, Maertz NA, Meethal SV et al (2005) Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation 111:988–995

    Article  CAS  PubMed  Google Scholar 

  80. Tang WH, Cheng WT, Kravtsov GM, Tong XY et al (2010) Cardiac contractile dysfunction during acute hyperglycemia due to impairment of SERCA by polyol pathway-mediated oxidative stress. Am J Physiol 299:C643–C653

    Article  CAS  Google Scholar 

  81. Ghezzi P (2005) Oxidoreduction of protein thiols in redox regulation. Biochem Soc Trans 33:1378

    Article  CAS  PubMed  Google Scholar 

  82. Adachi T, Weisbrod RM, Pimentel DR et al (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10:1200–1207

    Article  CAS  PubMed  Google Scholar 

  83. Lancel S, Zhang J, Evangelista A et al (2009) Nitroxyl activates SERCA in cardiac myocytes via glutathiolation of cysteine 674. Circ Res 104:720–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Tong X, Ying J, Pimentel DR et al (2008) High glucose oxidizes SERCA cysteine-674 and prevents inhibition by nitric oxide of smooth muscle cell migration. J Mol Cell Cardiol 44:361–369

    Article  CAS  PubMed  Google Scholar 

  85. Jardim-Messeder D, Camacho-Pereira J, Galina A (2012) 3-Bromopyruvate inhibits calcium uptake by sarcoplasmic reticulum vesicles but not SERCA ATP hydrolysis activity. Int J Biochem Cell Biol 44:801–807

    Article  CAS  PubMed  Google Scholar 

  86. Adachi T (2010) Modulation of vascular sarco/endoplasmic reticulum calcium ATPase in cardiovascular pathophysiology. In: Vanhoutte PM (ed) Advances in pharmacology. Academic Press, San Diego, CA, pp 165–195

    Google Scholar 

  87. Kho C, Lee A, Jeong D et al (2011) SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477:601–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Tilemann L, Lee A, Ishikawa K et al (2013) SUMO-1 gene transfer improves cardiac function in a large-animal model of heart failure. Sci Transl Med 5:211ra159

    Article  CAS  PubMed  Google Scholar 

  89. Van Rechem C, Boulay G, Pinte S et al (2010) Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Mol Cell Biol 30:4045–4059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Foster DB, Liu T, Rucker J et al (2013) The cardiac acetyl-lysine proteome. PLoS One 8, e67513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Clark RJ, McDonough PM, Swanson E et al (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem 278:44230–44237

    Article  CAS  PubMed  Google Scholar 

  92. Bidasee KR, Zhang Y, Shao CH et al (2004) Diabetes increases formation of advanced glycation End products on sarco(endo)plasmic reticulum Ca2+-ATPase. Diabetes 53:463–473

    Article  CAS  PubMed  Google Scholar 

  93. Bennett CE, Johnsen VL, Shearer J, Belke DD (2013) Exercise training mitigates aberrant cardiac protein O-GlcNAcylation in streptozotocin-induced diabetic mice. Life Sci 92:657–663

    Article  CAS  PubMed  Google Scholar 

  94. Hu Y, Belke D, Suarez J et al (2005) Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ Res 96:1006–1013

    Article  CAS  PubMed  Google Scholar 

  95. Yokoe S, Asahi M, Takeda T, Otsu K, Taniguchi N, Miyoshi E, Suzuki K (2010) Inhibition of phospholamban phosphorylation by O-GlcNAcylation: implications for diabetic cardiomyopathy. Glycobiology 20:1217–1226

    Article  CAS  PubMed  Google Scholar 

  96. Belke DD (2011) Swim-exercised mice show a decreased level of protein O-GlcNAcylation and expression of O-GlcNAc transferase in heart. J Appl Physiol 111:157–162

    Article  CAS  PubMed  Google Scholar 

  97. Carneiro-Júnior MA, Quintão-Júnior JF, Drummond LR et al (2013) The benefits of endurance training in cardiomyocyte function in hypertensive rats are reversed within four weeks of detraining. J Mol Cell Cardiol 57:119–128

    Article  CAS  PubMed  Google Scholar 

  98. Johnsen AB, Høydal M, Røsbjørgen R, Stølen T, Wisløff U (2013) Aerobic interval training partly reverse contractile dysfunction and impaired Ca2+ handling in atrial myocytes from rats with post infarction heart failure. PLoS One 8, e66288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Vanzelli AS, Medeiros A, Rolim N et al (2013) Integrative effect of carvedilol and aerobic exercise training therapies on improving cardiac contractility and remodeling in heart failure mice. PLoS One 8, e62452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Kemi OJ, Ellingsen O, Ceci M, Grimaldi S, Smith GL, Condorelli G, Wisløff U (2007) Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. J Mol Cell Cardiol 43:354–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Wisløff U, Loennechen JP, Currie S, Smith GL, Ellingsen Ø (2002) Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc Res 54:162–174

    Article  PubMed  Google Scholar 

  102. Thomas MM, Vigna C, Betik AC, Tupling AR, Hepple RT (2011) Cardiac calcium pump inactivation and nitrosylation in senescent rat myocardium are not attenuated by long-term treadmill training. Exp Gerontol 46:803–810

    Article  CAS  PubMed  Google Scholar 

  103. Norrbom J, Wallman SE, Gustafsson T, Rundqvist H, Jansson E, Sundberg CJ (2010) Training response of mitochondrial transcription factors in human skeletal muscle. Acta Physiol (Oxf) 198:71–79

    Article  CAS  Google Scholar 

  104. Lumini-Oliveira J, Magalhães J, Pereira CV, Moreira AC, Oliveira PJ, Ascensão A (2011) Endurance training reverts heart mitochondrial dysfunction, permeability transition and apoptotic signaling in long-term severe hyperglycemia. Mitochondrion 11:54–63

    Article  CAS  PubMed  Google Scholar 

  105. Bupha-Intr T, Laosiripisan J, Wattanapermpool J (2009) Moderate intensity of regular exercise improves cardiac SR Ca2+ uptake activity in ovariectomized rats. J Appl Physiol (1985) 107:1105–1112

    Article  CAS  Google Scholar 

  106. MacDonnell SM, Kubo H, Crabbe DL, Renna BF, Reger PO, Mohara J, Smithwick LA, Koch WJ, Houser SR, Libonati JR (2005) Improved myocardial beta-adrenergic responsiveness and signaling with exercise training in hypertension. Circulation 111:3420–3428

    Article  CAS  PubMed  Google Scholar 

  107. Ciloglu F, Peker I, Pehlivan A, Karacabey K, Ilhan N, Saygin O, Ozmerdivenli R (2005) Exercise intensity and its effects on thyroid hormones. Neuro Endocrinol Lett 26:830–834

    CAS  PubMed  Google Scholar 

  108. Hackney AC, Kallman A, Hosick KP, Rubin DA, Battaglini CL (2012) Thyroid hormonal responses to intensive interval versus steady-state endurance exercise sessions. Horm Athens Greece 11:54–60

    Google Scholar 

  109. Neto R, de Souza dos Santos M, Rangel I, Ribeiro M, Cavalcanti-de-Albuquerque J, Ferreira A, Cameron L, Carvalho D, Werneck de Castro J (2013) Decreased serum T3 after an exercise session is independent of glucocorticoid peak. Horm Metab Res 45:893–899

    Article  CAS  PubMed  Google Scholar 

  110. Shin M-S, Ko I-G, Kim S-E, Kim B-K, Kim T-S, Lee S-H, Hwang D-S, Kim C-J, Park J-K, Lim B-V (2013) Treadmill exercise ameliorates symptoms of methimazole-induced hypothyroidism through enhancing neurogenesis and suppressing apoptosis in the hippocampus of rat pups. Int J Dev Neurosci 31:214–223

    Article  CAS  PubMed  Google Scholar 

  111. Kinugawa K, Yonekura K, Ribeiro RCJ, Eto Y, Aoyagi T, Baxter JD, Camacho SA, Bristow MR, Long CS, Simpson PC (2001) Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ Res 89:591–598

    Article  CAS  PubMed  Google Scholar 

  112. St-Pierre DH, Faraj M, Karelis AD, Conus F, Henry JF, St-Onge M, Tremblay-Lebeau A, Cianflone K, Rabasa-Lhoret R (2006) Lifestyle behaviours and components of energy balance as independent predictors of ghrelin and adiponectin in young non-obese women. Diabetes Metab 32:131–139

    Article  CAS  PubMed  Google Scholar 

  113. Tsukinoki R, Morimoto K, Nakayama K (2005) Association between lifestyle factors and plasma adiponectin levels in Japanese men. Lipids Health Dis 4:27

    Article  PubMed Central  PubMed  Google Scholar 

  114. Balagopal P, George D, Yarandi H, Funanage V, Bayne E (2005) Reversal of obesity-related hypoadiponectinemia by lifestyle intervention: a controlled, randomized study in obese adolescents. J Clin Endocrinol Metab 90:6192–6197

    Article  CAS  PubMed  Google Scholar 

  115. Simpson KA, Singh MAF (2008) Effects of exercise on adiponectin: a systematic review. Obesity 16:241–256

    Article  CAS  PubMed  Google Scholar 

  116. Johnsen VL, Belke DD, Hughey CC, Hittel DS, Hepple RT, Koch LG, Britton SL, Shearer J (2013) Enhanced cardiac protein glycosylation (O-GlcNAc) of selected mitochondrial proteins in rats artificially selected for low running capacity. Physiol Genomics 45:17–25

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd A. Duhamel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hamm, N.C. et al. (2016). Regulation of Cardiac Sarco(endo)plasmic Reticulum Calcium-ATPases (SERCA2a) in Response to Exercise. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Advances in Biochemistry in Health and Disease, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-24780-9_11

Download citation

Publish with us

Policies and ethics