Skip to main content

The Plasma Membrane Calcium ATPase: Historical Appraisal and Some New Concepts

  • Chapter
  • First Online:
Regulation of Ca2+-ATPases,V-ATPases and F-ATPases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 14))

  • 1022 Accesses

Abstract

The plasma membrane calcium ATPase (PMCA pump) was discovered nearly 50 years ago. Among its functional properties, the wealth of regulatory mechanisms singles it out from all other members of the P-type ion pumps superfamily. The cytosolic C-terminal tail of the protein contains a binding domain for calmodulin, which binds to sites near the active site and maintains the enzyme autoinhibited in the resting state. Calmodulin removes the C-terminal domain from these docking sites, relieving the inhibition. Other pump regulators are the acidic phospholipids of the inner leaflet of the membrane, which are in principle sufficient for 50 % of maximal pump activity. The activation by acidic phospholipids could perhaps also be involved in the process of apoptosis, which is known to transfer the activatory phosphatidylserine to the outer leaflet of the membrane bilayer: the decreased Ca2+ ejection activity of the pump could amplify the cytosolic Ca2+ overload frequently involved in apoptosis. Another novel concept on the PMCA pump is the conclusion that its Ca2+ ejection activity is less important to the total regulation of cytosolic Ca2+ than that of the SERCA pump and the plasma membrane Na/Ca exchanger. The main role of the PMCA pump is instead the regulation of Ca2+ in restricted cytosolic domains in which it interacts with numerous important enzymes. The local regulation of Ca2+ necessarily confers to the activation by calmodulin an oscillatory character: as Ca2+ decreases in the local pump environment, calmodulin will leave the pump, terminating its activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schatzmann HJ (1966) ATP-dependent Ca++ -extrusion from human red cells. Experientia 22:364–365

    Article  CAS  PubMed  Google Scholar 

  2. Pedersen PL, Carafoli E (1987) Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem Sci 12:146–150

    Article  CAS  Google Scholar 

  3. Vorherr T, Kessler T, Hofmann F et al (1991) The calmodulin-binding domain mediates the self-association of the plasma membrane Ca2+ pump. J Biol Chem 266:22–27

    CAS  PubMed  Google Scholar 

  4. Tidow H, Poulsen LR, Andreeva A et al (2012) A bimodular mechanism of calcium control in eukaryotes. Nature 491:468–472

    Article  CAS  PubMed  Google Scholar 

  5. James P, Maeda M, Fischer R et al (1988) Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes. J Biol Chem 263:2905–2910

    CAS  PubMed  Google Scholar 

  6. Wang KK, Wright LC, Machan CL et al (1991) Protein kinase C phosphorylates the carboxyl terminus of the plasma membrane Ca2+ ATPase from human erythrocytes. J Biol Chem 266:9078–9085

    CAS  PubMed  Google Scholar 

  7. Ronner P, Gazzotti P, Carafoli E (1977) A lipid requirement for the (Ca2+ + Mg2+)-activated ATPase of erythrocyte membranes. Arch Biochem Biophys 179:578–583

    Article  CAS  PubMed  Google Scholar 

  8. Niggli V, Penniston JT, Carafoli E (1979) Purification of the (Ca2+ + Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem 254:9955–9958

    CAS  PubMed  Google Scholar 

  9. Niggli V, Adunyah ES, Carafoli E (1981) Acidic PL, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+ ATPase. J Biol Chem 256:8588–8592

    CAS  PubMed  Google Scholar 

  10. Enyedi A, Flura M, Sarkadi B et al (1987) The maximal velocity and the calcium affinity of the red cell calcium pump may be regulated independently. J Biol Chem 262:6425–6430

    CAS  PubMed  Google Scholar 

  11. Brodin P, Falchetto R, Vorherr T et al (1992) Identification of two domains which mediate the binding of activating PL to the plasma-membrane Ca2+ pump. Eur J Biochem 204:939–946

    Article  CAS  PubMed  Google Scholar 

  12. Guerini D, Zecca-Mazza A, Carafoli E (2000) Single amino acid mutations in trans membrane domain 5 confer to the plasma membrane Ca2+ pump properties typical of the Ca2+ pump of endo(sarco)plasmic reticulum. J Biol Chem 275:31361–31368

    Article  CAS  PubMed  Google Scholar 

  13. Shull GE, Greeb J (1988) Molecular cloning of two isoforms of the plasma membrane Ca2+ -transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+, K+- and other cation transport ATPases. J Biol Chem 263:8646–8657

    CAS  PubMed  Google Scholar 

  14. Verma AK, Filoteo AG, Stanford DR et al (1988) Complete primary structure of a human plasma membrane Ca2+ pump. J Biol Chem 263:14152–14159

    CAS  PubMed  Google Scholar 

  15. Falchetto R, Vorherr T, Brunner J et al (1991) The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain. J Biol Chem 266:2930–2936

    CAS  PubMed  Google Scholar 

  16. Falchetto R, Vorherr T, Carafoli E (1992) The calmodulin-binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci 1:1613–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378

    Article  CAS  PubMed  Google Scholar 

  18. Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81:21–50

    CAS  PubMed  Google Scholar 

  19. Schuh K, Cartwright EJ, Jankevics E (2004) Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem 279:28220–28226

    Article  CAS  PubMed  Google Scholar 

  20. Caride AJ, Filoteo AG, Penheiter AR et al (2001) Delayed activation of the plasma membrane calcium pump by a sudden increase in Ca2+: fast pumps reside in fast cells. Cell Calcium 30:49–57

    Article  CAS  PubMed  Google Scholar 

  21. Hilfiker H, Guerini D, Carafoli E (1994) Cloning and expression of isoform 2 of the human plasma membrane Ca2+ ATPase. Functional properties of the enzyme and its splicing products. J Biol Chem 269:26178–26183

    CAS  PubMed  Google Scholar 

  22. Elwess NL, Filoteo AG, Enyedi A et al (1997) Plasma membrane Ca2+ pump isoforms 2a and 2b are unusually responsive to calmodulin and Ca2+. J Biol Chem 272:17981–17986

    Article  CAS  PubMed  Google Scholar 

  23. Giacomello M, De Mario A, Primerano S et al (2012) Hair cells, plasma membrane Ca2+ ATPase and deafness. Int J Biochem Cell Biol 44:679–683

    Article  CAS  PubMed  Google Scholar 

  24. Chicka MC, Strehler EE (2003) Alternative splicing of the first intracellular loop of plasma membrane Ca2+ -ATPase isoform 2 alters its membrane targeting. J Biol Chem 278:18464–18470

    Article  CAS  PubMed  Google Scholar 

  25. Molkentin JD (2006) Dichotomy of Ca2+ in the heart: contraction versus intracellular signaling. J Clin Invest 116:623–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mohamed TMA, Oceandy D, Zi M et al (2011) Plasma membrane calcium pump (PMCA4)-neuronal nitric-oxide synthase complex regulates cardiac contractility through modulation of a compartmentalized cyclic nucleotide microdomain. J Biol Chem 286:41520–41529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fujimoto T (1993) Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120:1147–1157

    Article  CAS  PubMed  Google Scholar 

  28. Hammes A, Oberdorf-Maass S, Rother T et al (1998) Overexpression of the sarcolemmal calcium pump in the myocardium of transgenic rats. Circ Res 83:877–888

    Article  CAS  PubMed  Google Scholar 

  29. Cohen AW, Hnasko R, Schubert W et al (2004) Role of caveolae and caveolins in health and disease. Physiol Rev 84:1341–1379

    Article  CAS  PubMed  Google Scholar 

  30. Cartwright EJ, Oceandy D, Neyses L (2007) Plasma membrane calcium ATPase and its relationship to nitric oxide signaling in the heart. Ann N Y Acad Sci 1099:247–253

    Article  CAS  PubMed  Google Scholar 

  31. Pang Y, Zhu H, Wu P et al (2005) The characterization of plasma membrane Ca2+ ATPase in rich sphingomyelin-cholesterol domains. FEBS Lett 579:2397–2403

    Article  CAS  PubMed  Google Scholar 

  32. Tang D, Dean WL, Borchman D et al (2006) The influence of membrane lipid structure on plasma membrane Ca2+ ATPase activity. Cell Calcium 39:209–216

    Article  CAS  PubMed  Google Scholar 

  33. Jiang L, Fernandes D, Mehta N et al (2007) Partitioning the plasma-membrane Ca2+ ATPase into lipid rafts in primary neurons: effects of cholesterol depletion. J Neurochem 102:378–388

    Article  CAS  PubMed  Google Scholar 

  34. El-Yazbi AF, Cho WJ, Schulz R et al (2008) Calcium extrusion by plasma membrane calcium pump is impaired in caveolin-1 knockout mouse small intestine. Eur J Pharmacol 591:80–87

    Article  CAS  PubMed  Google Scholar 

  35. Lopreiato R, Giacomello M, Carafoli E (2014) The plasma membrane calcium pump: new ways to look at an old enzyme. J Biol Chem 289:10261–10268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fadok VA, Voelker DR, Campbell PA et al (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    CAS  PubMed  Google Scholar 

  37. Verhoven B, Schlegel RA, Williamson P (1995) Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med 182:1597–1601

    Article  CAS  PubMed  Google Scholar 

  38. Filomatori CV, Rega AF (2003) On the mechanism of activation of the plasma membrane Ca2+ -ATPase by ATP and acidic PL. J Biol Chem 278:22265–22271

    Article  CAS  PubMed  Google Scholar 

  39. Choquette D, Hakim G, Filoteo AG et al (1984) Regulation of plasma membrane Ca2+ ATPases by lipids of the phosphatidylinositol cycle. Biochem Biophys Res Commun 125:908–915

    Article  CAS  PubMed  Google Scholar 

  40. Corradi GR, Adamo HP (2007) Intramolecular fluorescence resonance energy transfer between fused autofluorescent proteins reveals rearrangements of the N- and C-terminal segments of the plasma membrane Ca2+ pump involved in the activation. J Biol Chem 282:35440–35448

    Article  CAS  PubMed  Google Scholar 

  41. Bredeston LM, Adamo HP (2004) Loss of autoinhibition of the plasma membrane Ca2+ pump by substitution of aspartic 170 by asparagines. Activation of plasma membrane calcium ATPase 4 without disruption of the interaction between the catalytic core and the C-terminal regulatory domain. J Biol Chem 279:41619–41625

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Carafoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carafoli, E. (2016). The Plasma Membrane Calcium ATPase: Historical Appraisal and Some New Concepts. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Advances in Biochemistry in Health and Disease, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-24780-9_1

Download citation

Publish with us

Policies and ethics