Skip to main content

Laser Based Spectroscopies for Minerals Prospecting

  • Chapter
  • First Online:
Modern Luminescence Spectroscopy of Minerals and Materials

Part of the book series: Springer Mineralogy ((MINERAL))

  • 1573 Accesses

Abstract

This chapter consists in the presentation of laser-based spectroscopies dedicated to ore prospection. Among them is presented remote laser-induced photoluminescence of minerals, breakdown spectroscopy for environmental application and for planet exploration as well the combination of those technics (LIBS and Raman, Raman and time-resolved luminescence). Examples are shown concerning homeland security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asher S, Johnson C (1984) Raman spectroscopy of a coal liquid shows that fluorescence interference is minimized with ultraviolet excitation. Science 225:311–313

    Article  Google Scholar 

  • Bozlee B, Misra A, Sharma S, Ingram M (2005) Remote Raman and fluorescence studies of minerals samples. Spectrochim Acta A 61:2342–2348

    Article  Google Scholar 

  • Broicher H (2000) Bulk sorting by LIF: quality control of ores for bulk sorting and blending – by laser-induced fluorescence analysis. Min Eng 52:73–77

    Google Scholar 

  • Bushev A, Portnov A (2000) Photoluminescent haloes of gold-bearing deposits. Izvestia VUZov, Geologia I Razvedka 2:40–42 (in Russian)

    Google Scholar 

  • Carter J, Angel S, Lawrence-Snyder M et al (2005) Standoff detection of high explosive materials at 50 meters in ambient conditions using small Raman instrument. Appl Spectrosc 59:769–775

    Article  Google Scholar 

  • Ferreira EC, Milori D, Ferreira EJ et al (2011) Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge conditions. Talanta 85:435–440

    Article  Google Scholar 

  • Fleger Y, Nagli L, Gaft M, Rosenbluh M (2009) Narrow gated Raman and luminescence of explosives. J Lumin 129:979–983

    Article  Google Scholar 

  • Forni O, Gaft M, Toplis M et al (2014) First fluorine and chlorine detection with CHEMCAM on MSL. 45th Lunar and Planetary Science Conference 1328

    Google Scholar 

  • Forni O, Gaft M, Toplis M, Clegg S et al (2015) First detection of fluorine on Mars: implications for Gale crater’s geochemistry. Geophys Res Lett 42:1020–1028

    Article  Google Scholar 

  • Gaft M, Nagli L (2008) Laser-based spectroscopy for standoff detection of explosives. Opt Mater 30:1739–1746

    Article  Google Scholar 

  • Gaft M, Nagli L, Eliezer N, Groisman Y, Forni O (2014b) Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air. Spectroch Acta B 95:39–47

    Google Scholar 

  • Gorobets B, Kudrina M (1976) Typomorphic features of scheelite as revealed by their rare-earth elements luminescence spectra. Const Svoy Miner, Kiev, Naukova Dumka 10:82–88 (in Russian)

    Google Scholar 

  • Gorobets B, Rogojine A (2001) Luminescent spectra of minerals. Handbook. RPC VIMS, Moscow

    Google Scholar 

  • Gorobets B, Walker G (1994) Origins of luminescence in minerals: a summary of fundamental studies and applications. In: Marfunin A (ed) Advanced mineralogy 2, methods and instrumentation. Springer, Berlin/Heidelberg/New York, pp 138–146

    Google Scholar 

  • Gorobets B, Portnov A, Rogojine A (1995) Luminescence spectroscopy of the earth. Radiat Meas 24:485–491

    Article  Google Scholar 

  • Gottfried J, De Lucia F, Munson C, Miziolek A (2009) Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Anal Bioanal Chem 395:283–300

    Article  Google Scholar 

  • Haley L, Thekkadath G (1998) Laser detection of explosive residues. US Patent 5,760,898

    Google Scholar 

  • Ismael A, Bousquet B, Michel-le Pierres K et al (2011) In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS). Soc Appl Spectrosc 65:467–473

    Article  Google Scholar 

  • Kupriyanova I, Moroshkin V (1987) On the possibilities of use of luminescence properties of plagioclase and apatite as emerald indicators. Izvestia AN SSSR (Ser Geol) 9:84–90 (in Russian)

    Google Scholar 

  • Lasheras R, Bello-Galvez C, Rodriguez-Celis E, Anzano J (2011) Discrimination of organic solid materials by LIBS using methods of correlation and normalized coordinates. J Hazard Mater 192:704–713

    Article  Google Scholar 

  • López-Moreno C, Palanco S, Laserna et al (2006) Test of a stand-off laser-induced luminescence detection of explosive residues on solid surfaces. J Anal Atom Spectrosc 21:55–60

    Article  Google Scholar 

  • Maurice S, Wiens R, Saccoccio M et al (2012) The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: science objectives and mast unit description. Space Sci Rev. doi:10.1007/s11214-012-9912-2

    Google Scholar 

  • Measures R (1985) Laser remote sensing: fundamentals and applications. Wiley, New York

    Google Scholar 

  • Measures R, Houston W, Stephenson D (1974) Laser induced fluorescent decay spectra – a new form of environmental signature. Opt Eng 13:494–501

    Article  Google Scholar 

  • Misra A, Sharma S, Lucey P (2010) Method and apparatus for remote Raman and laser induced breakdown spectrometry. US Patent 2010/0171951 A1

    Google Scholar 

  • Nagli M, Gaft M, Fleger Y, Rozenbluh M (2008) Absolute Raman cross sections of some explosives: trend to UV. Opt Mater 30:1747–1754

    Article  Google Scholar 

  • Phifer C, Schmitt R, Hargis P (2006) Studeis of the laser induced fluorescence of explosives and explosive compositions, SAND2006-6697. Sandia National Laboratories, Albuquerque

    Google Scholar 

  • Portnov A, Rosenwaks S, Bar I (2003) Identification of organic compounds in ambient air via characteristic emission following laser ablation. J Lumin 102–103:408–413

    Article  Google Scholar 

  • Portnov A, Bar I, Rosenwaks S (2010) Highly sensitive standoff detection of explosives via backward coherent anti-Stokes Raman scattering. Appl Phys B 98:529–535

    Article  Google Scholar 

  • Sands H, Hayward I, Kirkbride T, Bannett R, Lacey R, Batchelder D (1998) UV-excited resonance Raman spectroscopy of narcotics and explosives. J Forensic Sci 43:509–513

    Article  Google Scholar 

  • Seigel H, Robbins J (1982) Method and apparatus for the remote detection of certain minerals of uranium, zinc, lead and other metals. UK Patent Application, GB 2089029

    Google Scholar 

  • Seigel H, Robbins J (1985) Luminescence method-new method of air and ground exploration of ore deposits. ITC J 3:162–168

    Google Scholar 

  • Sharma S, Misra A, Lucey P et al (2007) Combined remote LIBS and Raman spectroscopy of sulfur-containing minerals, and minerals coated with hematite and covered with basaltic dust at 8.6 m. Spectrochim Acta A 68:1036–1045

    Article  Google Scholar 

  • Sharma S, Misra A, Lucey P, Lentz R (2009) A combined remote Raman and LIBS Instrument for characterizing minerals with 532 nm laser excitation. Spectrochim Acta A 73:468–476

    Article  Google Scholar 

  • Sharma S, Misra A, Acosta T, Lucey P (2012) Time-resolved remote Raman and fluorescence spectrometers for planetary exploration. In: Turner M, Kamerman G (eds) Laser Radar technology and applications XVII, vol 8379. SPIE, Bellingham, pp 83790J/1–83790J/12

    Chapter  Google Scholar 

  • Shteinman B, Berman T, Inbar M, Gaft M (1997) A modified fluorescent tracer approach for studies of sediment dynamics. Israel J Earth Sci 46:107–113

    Google Scholar 

  • Uspensky E, Brugger J, Graeseer S (1998) REE geochemistry systematic of sheelite from the Alps using luminescence spectroscopy: from global regularities to local control. Schweiz Miner Petrogr Mitt 78:31–54

    Google Scholar 

  • Wiens R, Sharma S, Thompson J, Misra A, Lucey P (2005) Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances. Spectrochim Acta A 10:2324–2334

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gaft, M., Reisfeld, R., Panczer, G. (2015). Laser Based Spectroscopies for Minerals Prospecting. In: Modern Luminescence Spectroscopy of Minerals and Materials. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-319-24765-6_7

Download citation

Publish with us

Policies and ethics