Skip to main content

Complementary Laser Based Spectroscopies

  • Chapter
  • First Online:
Modern Luminescence Spectroscopy of Minerals and Materials

Part of the book series: Springer Mineralogy ((MINERAL))

  • 1569 Accesses

Abstract

The chapter describes two laser-based techniques, Laser-Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy, which are complimentary with laser-induced luminescence. The aspects mostly relevant to minerals research are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht A, Hutley M (1971) On the dependence of vibrational Raman intensity on the wavelength of the incident light. J Chem Phys 55:4438–4443

    Article  Google Scholar 

  • Angel M, Gomer N, Sharma S, McKay C (2012) Remote Raman spectroscopy for planetary exploration: a review. Focal point review. Appl Spectrosc 66:137–150

    Article  Google Scholar 

  • Asher S (2002) Ultraviolet Raman spectrometry. In: Chalmers J, Griffiths P (eds) Handbook of vibrational spectroscopy. Wiley, New York, pp 557–571

    Google Scholar 

  • Asher S, Johnson C (1984) Raman spectroscopy of a coal liquid shows that fluorescence interference is minimized with ultraviolet excitation. Science 225:311–313

    Article  Google Scholar 

  • Bell S, Bourguignon E, Grady A et al (2000) Identification of dyes on ancient Chinese paper samples using the subtracted shifted Raman spectroscopy method. Anal Chem 72:234–239

    Article  Google Scholar 

  • Blacksberg J, Rossman GR, Gleckler A (2010) Time-resolved Raman spectroscopy for in-situ planetary mineralogy. Appl Opt 49:4951–4962

    Article  Google Scholar 

  • Blacksberg J, Maruyama Y, Charbon E, Rossman GR (2011) Fast single-photon avalanche diode arrays for laser Raman spectroscopy. Opt Lett 36:3672–3676

    Article  Google Scholar 

  • Cremerz D, Radziemski L (2013) Handbook of laser-induced breakdown spectroscopy, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Dubessy J, Orlov R, McMillan P (1994) Raman spectroscopy in earth science. In: Marfunin A (ed) Advanced mineralogy 2, methods and instrumentation. Springer, Berlin/Heidelberg/New York, pp 138–146

    Google Scholar 

  • Dubessy J, Caumon M-C, Rull F, Sharma S (2012) Instrumentation in Raman spectroscopy: elementary theory and practice. In: Dubessy J, Caumon M-C, Rull F (eds) Raman spectroscopy applied to earth sciences and cultural heritage, vol 12. EMU Notes in Mineralogy, London, pp 83–172

    Google Scholar 

  • Everall N, Hahn T, Matuosek P, Parker A, Towrie M (2001) Picosecond time-resolved Raman spectroscopy of solids: capabilities and limitations for fluorescence rejection and the influence of diffuse reflectance. Appl Spectrosc 55:1701–1708

    Article  Google Scholar 

  • Gaft M, Nagli L (2008) Laser-based spectroscopy for standoff detection of explosives. Opt Mater 30:1739–1746

    Article  Google Scholar 

  • Gaft M, Nagli L (2009) UV gated Raman spectroscopy of minerals. Eur J Miner 21:33–42

    Article  Google Scholar 

  • Gaft M, Dvir E, Modiano H, Schone U (2008) Laser induced breakdown spectroscopy machine for online ash analyses in coal. Spectrochim Acta B 63:1177–1182

    Article  Google Scholar 

  • Gaft M, Nagli L, Groisman Y (2011b) Luminescence excited by laser induced plasma. Opt Mater 34:368–375

    Article  Google Scholar 

  • Gaft M, Nagli L, Gornushkin I, Groisman Y (2011c) Emission of double ionized atoms in laser-induced breakdown spectroscopy. Anal Bioanal Chem 400:3229–3237

    Article  Google Scholar 

  • Gaft M, Nagli L, Gornushkin I (2013) Laser-induced breakdown spectroscopy of Zr in short ultraviolet wavelength range. Spectrochim Acta B 85:93–99

    Google Scholar 

  • Gaft M, Nagli L, Groisman Y, Barishnikov A (2014a) Industrial online raw materials analyzer based on laser-induced breakdown spectroscopy. Appl Spectrosc 68:7–18

    Article  Google Scholar 

  • Gaft M, Nagli L, Eliezer N et al (2014b) Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air. Spectrochim Acta 95:39–47

    Article  Google Scholar 

  • Gaft M, Nagli L, Eleizer N, Groisman Y (2015) Boron- and iron-bearing molecules in Laser-Induced Plasma (LIP). Spectrochim Acta B 110:56–61

    Article  Google Scholar 

  • Hahn D, Omenetto N (2010) Laser-Induced Breakdown Spectroscopy (LIBS), Part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community. Appl Spectrosc 64:335–366

    Article  Google Scholar 

  • Hahn D, Omenetto N (2012) Laser-Induced Breakdown Spectroscopy (LIBS), Part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc 66:347–419

    Article  Google Scholar 

  • Jasinevicius R (2009) Characterization of vibrational and electronic features in the Raman spectra of gemstones. MSc thesis, Department of Geosciences, University of Arizona, Tucson

    Google Scholar 

  • Kauppinen T, Khajehzadeh N, Haavisto O (2014) Laser-induced fluorescence images and Raman spectroscopy studies on rapid scanning of rock drill core samples. Int J Miner Proc 132:26–33

    Article  Google Scholar 

  • Lamprecht G, Himan H, Snyman L (2007) Detection of diamond in ore using pulsed laser Raman spectroscopy. J Miner Proc 84:262–273

    Article  Google Scholar 

  • Lenz C, Nasdala L, Talla D et al (2015) Laser-induced REE3+ photoluminescence of selected accessory minerals – an “advantageous artefact” in Raman spectroscopy. Chem Geol

    Google Scholar 

  • Liu Y, Gigant L, Matthieu Baudelet M, Richardson M (2012) Correlation between laser-induced breakdown spectroscopy signal and moisture content. Spectrochim Acta B 73:71–74

    Article  Google Scholar 

  • Ma Q, Motto-Ros V, Lei W et al (2010) Multi-elemental mapping of a speleothem using laser-induced breakdown spectroscopy. Spectrochim Acta B 65:707–714

    Article  Google Scholar 

  • Mao X, Bol’shakov A, Choi I et al (2011) Laser ablation molecular isotopic spectrometry: strontium and its isotopes. Spectrochim Acta B 66:767–775

    Article  Google Scholar 

  • Measures R, Kwong H (1979) TABLASER: trace (element) analyzer based on laser ablation and selectively excited radiation. Appl Opt 18:281–286

    Article  Google Scholar 

  • Misra A, Sharma S, Lucey P (2006) Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse. Appl Spectrosc 60(2):223–228

    Article  Google Scholar 

  • Miziolek A, Palleschi V, Schechter I (eds) (2006) Laser induced breakdown spectroscopy (LIBS): fundamentals and applications. Cambridge University, Cambridge

    Google Scholar 

  • Mulliken R (1925) The isotope effects in band spectra II: the spectrum of boron monoxide. Phys Rev 25:259–296

    Article  Google Scholar 

  • Nagli L, Gaft M (2013) Fraunhofer type absorption line splitting and polarization in confocal double pulse laser induced plasma. Spectrochim Acta B 88:127–135

    Article  Google Scholar 

  • Nagli L, Gaft M (2015a) Lasing effect in laser-induced plasma plume. Opt Commun 354:330–332

    Article  Google Scholar 

  • Nagli L, Gaft M (2015b) Combining laser-induced breakdown spectroscopy with molecular laser-induced fluorescence. Appl Spectr (Published online)

    Google Scholar 

  • Nagli L, Gaft M, Gornushkin I (2011) Comparison of single and double-pulse excitation during the earliest stage of laser induced plasma. Anal Bioanal Chem 10:3207–3216

    Article  Google Scholar 

  • Nasdala L, Hanchar G (2005) Comment on: application of Raman spectroscopy to distinguish metamorphic and igneous zircon. Anal Lett 38:727–734

    Article  Google Scholar 

  • Nasdala L, Smith D, Kaindl R, Ziemann M (2004) Raman spectroscopy: analytical perspectives in mineralogical research. In: Beran A, Libowitzky E (eds) EMU notes in mineralogy, spectroscopic methods in mineralogy. Vol. 6/7. Mineralogical Society of America, Chantilly, pp 281–343

    Google Scholar 

  • Noll R (2012) Laser induced breakdown spectroscopy: fundamentals and applications. Springer, Berlin

    Book  Google Scholar 

  • Panczer G, De Ligny D, Mendoza C et al (2012) Raman and fluorescence in earth sciences. In: Dubessy J, Caumon M, Rull F (eds) Raman spectroscopy applied to earth sciences and cultural heritage. Chapter 2, vol 12. EMU Notes in Mineralogy, London, pp 61–80

    Google Scholar 

  • Parigger C (2013) Atomic and molecular emissions in laser-induced breakdown spectroscopy. Spectrochim Acta B 79–80:4–16

    Article  Google Scholar 

  • Paris P, Piip K, Lepp A et al (2015) Discrimination of moist oil shale and limestone using laser induced breakdown spectroscopy. Spectrochim Acta B 107:61–66

    Article  Google Scholar 

  • Pearse R, Gaydon A (1965) The identification of the molecular spectra. Chapman & Hall, London

    Google Scholar 

  • Ribiere M, Cheron B (2010) Analysis of relaxing laser-induced plasmas by absorption spectroscopy: toward a new quantitative diagnostic technique. Spectrochim Acta B 65:524–532

    Article  Google Scholar 

  • Rossi M, Dell’Aglio M, De Giacomo A et al (2014) Multi-methodological investigation of kunzite, hiddenite, alexandrite, elbaite and topaz, based on laser-induced breakdown spectroscopy and conventional analytical techniques for supporting mineralogical characterization. Phys Chem Miner 41:127–140

    Article  Google Scholar 

  • Russo R, Bol’shakov A, Mao X et al (2011) Laser ablation molecular isotopic spectrometry. Spectrochim Acta B 66:99–104

    Article  Google Scholar 

  • Sedlachek A, Ray M, Wu M (2004) Application of UV Raman scattering to non-traditional stand-off chemical detection. Trends Appl Spectrosc 5:19–38

    Google Scholar 

  • Senesi G (2014) Laser-Induced Breakdown Spectroscopy (LIBS) applied to terrestrial and extraterrestrial analogue geomaterials with emphasis to minerals and rocks. Earth Sci Rev 139:231–267

    Article  Google Scholar 

  • Sharma S, Lucey P, Ghosh M et al (2003) Stand-off Raman spectroscopic detection of minerals on planetary surfaces. Spectrochim Acta A 59:2391–2407

    Article  Google Scholar 

  • Singh J, Thakur S (2007) Laser-induced breakdown spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  • Smith E, Dent G (2005) Modern Raman spectroscopy: a practical approach. Wiley, Hoboken

    Google Scholar 

  • Steinfeld J, Wormhoudt J (1998) Explosives detection: a challenge for physical chemistry. Ann Rev Phys Chem 49:203–232

    Article  Google Scholar 

  • Storrie-Lombardi M, Hug W, McDonald G et al (2001) Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging. Rev Sci Instrum 72:4452–4459

    Article  Google Scholar 

  • Volodin B, Dolgy B, Lieber C et al (2013) Quantitative and qualitative analysis of fluorescent substances and binary mixtures by use of shifted excitation Raman difference spectroscopy. In: Mahadevan-Jansen A, Vo-Dinh T, Grundfest W (eds) Advanced biomedical and clinical diagnostic systems XI progress in biomedical optics and imaging, vol 14. SPIE, Bellingham, pp 8572 11–8572 12

    Google Scholar 

  • Yifrach A, Neta U (1992) Method and apparatus for identifying gemstones, particularly diamonds. US Patent 5,118,181

    Google Scholar 

  • Zaitsev A (2005) Optical properties of diamond. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gaft, M., Reisfeld, R., Panczer, G. (2015). Complementary Laser Based Spectroscopies. In: Modern Luminescence Spectroscopy of Minerals and Materials. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-319-24765-6_6

Download citation

Publish with us

Policies and ethics