Skip to main content

Fuzzy Integrals

  • Chapter
  • First Online:
A Practical Guide to Averaging Functions

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 329))

  • 1574 Accesses

Abstract

This chapter presents two main types of fuzzy integrals, the Choquet integral and the Sugeno integral. Fuzzy measures are introduced and their main properties and special cases are discussed. Various indices which characterize fuzzy measures are presented. The topic of fitting fuzzy measures to empirical data is treated in detail. Induced fuzzy integrals are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A set function is a function whose domain consists of all possible subsets of \(\mathcal N\). For example, for \(n=3\), a set function is specified by \(2^3=8\) values at \(v(\emptyset )\), \(v(\{1\})\), \(v(\{2\})\), \(v(\{3\})\), \(v(\{1,2\})\), \(v(\{1,3\})\), \(v(\{2,3\})\), \(v(\{1,2,3\})\).

  2. 2.

    In general, this definition applies to any set function.

  3. 3.

    Such an array is based on a Hasse diagram of the inclusion relation defined on the set of subsets of \(\mathcal N\).

  4. 4.

    Two vectors \(\mathbf {x}, \mathbf {y} \in {\mathbb R}^n\) are called comonotone if there exists a common permutation P of \(\{1,2,\ldots ,n\}\), such that \(x_{P(1)}\le x_{P(2)} \le \cdots \le x_{P(n)}\) and \(y_{P(1)}\le y_{P(2)} \le \cdots \le y_{P(n)}\). Equivalently, this condition is frequently expressed as \((x_i-x_j)(y_i-y_j)\ge 0\) for all \(i,j \in \{1,\ldots ,n\}\).

  5. 5.

    As a consequence, this property holds for a linear convex combination of any number of fuzzy measures.

  6. 6.

    Since Choquet integral is a homogeneous aggregation function, we can calculate it directly on \([0,20]^n\) rather than scaling the inputs to \([0,1]^n\).

  7. 7.

    For a fixed \(m\ge 1\) this condition is called m-monotonicity (simple monotonicity for \(m=1\)), and if it holds for all \(m\ge 1\), it is called total monotonicity [Den00, Gra00]. For a fixed m, condition in Definition 4.35 is called m-alternating monotonicity. 2-monotone fuzzy measures are called supermodular (see Definition 4.14), also called convex, whereas 2-alternating fuzzy measures are called submodular. If a fuzzy measure is m-monotone, its dual is m-alternating and vice versa.

  8. 8.

    A set E is convex if \(\alpha x+(1-\alpha )y\in E\) for all \(x,y \in E, \alpha \in [0,1]\).

  9. 9.

    Weakly monotone refers here to this property: \(\forall \mathcal A, \mathcal B \subseteq \mathcal N\), \(\mathcal A \subseteq \mathcal B\) implies \(v_k(\mathcal A^k) \le v_k(\mathcal B^k)\).

  10. 10.

    Such interactions are well known in game theory. For example, contributions of the efforts of workers in a group can be greater or smaller than the sum of their separate contributions (if working independently).

  11. 11.

    See discussion in [GNW95], p. 318.

  12. 12.

    We remind that in the definition OWA, we used a non-increasing permutation of the components of \(\mathbf {x}\), \(\mathbf {x}_{\searrow }\), whereas in Choquet integral we use a non-decreasing permutation \(\mathbf {w}_{\nearrow }\). Then OWA is expressed as

    $$ C_v(\mathbf {x})=\sum _{i=1}^n x_{\nearrow (i)}\left( Q(\frac{n-i+1}{n})-Q(\frac{n-i}{n})\right) =\sum _{i=1}^n x_{\searrow (i)}\left( Q(\frac{i}{n})-Q(\frac{i-1}{n})\right) . $$

    We also remind that \(Q:[0,1]\rightarrow ][0,1], Q(0)=0, Q(1)=1\) is a RIM quantifier which determines values of v as \(v(\mathcal A) = Q\left( \frac{|\mathcal A|}{n}\right) \).

  13. 13.

    See footnote 4 on p. 150.

References

  1. J.F. Banzhaf, Weight voting doesn’t work: a mathematical analysis. Rutgers Law Rev. 19, 317–343 (1965)

    Google Scholar 

  2. G. Beliakov, S. James, G. Li, Learning Choquet-integralbased metrics for semisupervised clustering. IEEE Trans. Fuzzy Syst. 19, 562–574 (2011)

    Article  Google Scholar 

  3. G. Beliakov, Q.H. Vu, G. Li, A Choquet integral toolbox and its application in customer preference analysis, in Data Mining Applications with R eds. by Y. Zhao, Y. Cen (Academic Press, Waltham, 2014), pp. 247–272

    Google Scholar 

  4. J. Bolton, P. Gader, J.N. Wilson, Discrete Choquet integral as a distance metric. IEEE Trans. Fuzzy Syst. 16, 1107–1110 (2008)

    Article  Google Scholar 

  5. A. Cena, M. Gagolewski, OM3: Ordered Maxitive, Minitive, and Modular aggregation operators. A simulation study (II), in Aggregation Functions in Theory and in Practise, eds. by H. Bustince, J. Fernandez, R. Mesiar, T. Calvo. Advances in Intelligent Systems and Computing, vol. 228 (Springer, Heidelberg, 2013), pp. 105–115

    Google Scholar 

  6. A. Cena, M. Gagolewski, OM3: Ordered Maxitive, Minitive, and Modular aggregation operators: axiomatic analysis under arity-dependence (I), in Aggregation Functions in Theory and in Practise, eds. by H. Bustince, J. Fernandez, R. Mesiar, T. Calvo. Advances in Intelligent Systems and Computing, vol. 228 (Springer, Heidelberg, 2013), pp. 93–103

    Google Scholar 

  7. A. Cena, M. Gagolewski, OM3: ordered maxitive, minitive, and modular aggregation operators axiomatic and probabilistic properties in an arity-monotonic setting. Fuzzy Sets Syst. 264, 138–159 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Chateauneuf, J.Y. Jaffray, Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Math. Soc. Sci. 17, 263–283 (1989)

    Article  MATH  Google Scholar 

  9. T.-Y. Chen, J.-C. Wang, Identification of \(\lambda \)-fuzzy measures using sampling design and genetic algorithms. Fuzzy Sets Syst. 123, 321–341 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Choquet, Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Denneberg, Non Additive Measure and Integral (Kluwer Academic Publishers, Dordorecht, 1994)

    Book  MATH  Google Scholar 

  12. D. Denneberg, Non-additive measure and integral, basic concepts and their role for applications, in Fuzzy Measures and Integrals. Theory and Applications, eds. by M. Grabisch, T.Murofushi, M. Sugeno (Physica-Verlag, Heidelberg, 2000), pp. 42–69

    Google Scholar 

  13. D. Dubois, H. Prade, Possibility Theory (Plenum Press, New York, 1988)

    Book  MATH  Google Scholar 

  14. D. Dubois, H. Prade, Fundamentals of Fuzzy Sets (Kluwer, Boston, 2000)

    Book  MATH  Google Scholar 

  15. D. Dubois, J.-L. Marichal, H. Prade, M. Roubens, R. Sabbadin, The use of the discrete Sugeno integral in decision making: a survey. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 9, 539–561 (2001)

    Google Scholar 

  16. M. Gagolewski, On the relationship between symmetric maxitive, minitive, and modular aggregation operators. Inf. Sci. 221, 170–180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Gagolewski, R. Mesiar, Aggregating different paper quality measures with a generalized h-index. J. Informetrics 6, 566–579 (2013)

    Article  Google Scholar 

  18. M. Gagolewski, R. Mesiar, Monotone measures and universal integrals in a uniform framework for the scientific impact assessment problem. Inf. Sci. 263, 166–174 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Grabisch, The applications of fuzzy integrals in multicriteria decision making. Euro. J. Oper. Res. 89, 445–456 (1996)

    Article  MATH  Google Scholar 

  20. M. Grabisch, k-order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst. 92, 167–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Grabisch, The interaction and Möbius representation of fuzzy measures on finite spaces, k-additive measures: a survey, in Fuzzy Measures and Integrals. Theory and Applications. eds. by M. Grabisch, T. Murofushi, M. Sugeno (Physica-Verlag, Heidelberg, 2000), pp. 70–93

    Google Scholar 

  22. M. Grabisch, C. Labreuche, To be symmetric or asymmetric? A dilemma in decision making, in Preferences and Decisions under Incomplete Knowledge, eds. by J. Fodor, B. De Baets, P. Perny (Physica-Verlag, Heidelberg, 2000)

    Google Scholar 

  23. M. Grabisch, H.T. Nguyen, E.A. Walker, Fundamentals of Uncertainty Calculi, with Applications to Fuzzy Inference (Kluwer, Dordrecht, 1995)

    Book  MATH  Google Scholar 

  24. M. Grabisch, J.-L. Marichal, M. Roubens, Equivalent representations of set functions. Math. Oper. Res. 25, 157–178 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Grabisch, T. Murofushi, M. Sugeno (eds.), Fuzzy Measures and Integrals, Theory and Applications (Physica-Verlag, Heidelberg, 2000)

    Google Scholar 

  26. M. Grabisch, I. Kojadinovic, P. Meyer, A review of methods for capacity identification in Choquet integral based multiattribute utility theory. Euro. J. Oper. Res. 186, 766–785 (2008)

    Article  MATH  Google Scholar 

  27. K. Ishii, M. Sugeno, A model of human evaluation process using fuzzy measure. Int. J. Man-Mach. Stud. 22, 19–38 (1985)

    Article  MATH  Google Scholar 

  28. E.P. Klement, M. Manzi, R. Mesiar, Ultramodular aggregation functions. Inf. Sci. 181, 4101–4111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Klir, Z. Wang, D. Harmanec, Constructing fuzzy measures in expert systems. Fuzzy Sets Syst. 92, 251–264 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. I. Kojadinovic, M. Grabisch, Non additive measure and integral manipulation functions, R package version 0.4-6 (2005), http://cran.r-project.org/web/packages/kappalab/index.html

  31. I. Kojadinovic, J.-L. Marichal, M. Roubens, An axiomatic approach to the definition of the entropy of a discrete Choquet capacity. Inf. Sci. 172, 131–153 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. K.M. Lee, H. Leekwang, Identification of \(\lambda \)-fuzzy measure by genetic algorithms. Fuzzy Sets Syst. 75, 301–309 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. J.-L. Marichal, On Choquet and Sugeno integrals as agregation functions, in Fuzzy Measures and Integrals. Theory and Applications, eds. by M. Grabisch, T. Murofushi, M. Sugeno (Physica-Verlag, Heidelberg, 2000), pp. 247–272

    Google Scholar 

  34. J.-L. Marichal, On Sugeno integral as an aggregation function. Fuzzy Sets Syst. 114, 347–365 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. J.-L. Marichal, Aggregation of interacting criteria by means of the discrete Choquet integral, in Aggregation Operators. New Trends and Applications, eds. by T. Calvo, G. Mayor, R. Mesiar (Physica-Verlag, Heidelberg, 2002), pp. 224–244

    Google Scholar 

  36. J.-L. Marichal, Entropy of discrete Choquet capacities. Euro. J. Oper. Res. 137, 612–624 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. J.-L. Marichal, Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral. Euro. J. Oper. Res. 155, 771–791 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Mesiar, Choquet-like integrals. J. Math. Anal. Appl. 194, 477–488 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Mesiar, Generalizations of \(k\)-order additive discrete fuzzy measures. Fuzzy Sets Syst. 102, 423–428 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Mesiar, \(k\)-order additive measures. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 7, 561–568 (1999)

    Google Scholar 

  41. P. Miranda, M. Grabisch, Optimization issues for fuzzy measures. Int. J. Uncertainty, Fuzziness Knowl.-Based Syst. 7, 545–560 (1999)

    Google Scholar 

  42. Y. Narukawa, Distances defined by Choquet integral, in FUZZIEEE, London, U.K., July 2007, pp. 511–516

    Google Scholar 

  43. Y. Narukawa, V. Torra, Fuzzy measure and probability distributions: distorted probabilities. IEEE Trans. Fuzzy Syst. 13, 617–629 (2005)

    Article  Google Scholar 

  44. E. Pap (ed.), Handbook of Measure Theory (North Holland/Elsevier, Amsterdam, 2002)

    MATH  Google Scholar 

  45. D. Ralescu, G. Adams, The fuzzy integral. J. Math. Anal. Appl. 86, 176–193 (1980)

    Article  MATH  Google Scholar 

  46. M. Roubens, Interaction between criteria and definition of weights in MCDA problems, in 44th Meeting of the European Working Group Multicriteria Aid for Decisions. Brussels, Belgium, 1996

    Google Scholar 

  47. G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, 1976)

    MATH  Google Scholar 

  48. M.A. Sicilia, E. García Barriocanal, T. Calvo, An inquirybased method for Choquet integral-based aggregation of interface usability parameters, in Kybernetika, vol. 39 (2003), pp. 601–614

    Google Scholar 

  49. M. Sugeno, Theory of Fuzzy Integrals and Applications. Ph.D. thesis. Tokyo Institute of Technology, 1974

    Google Scholar 

  50. V. Torra, Y. Narukawa, The h-index and the number of citations: two fuzzy integrals. IEEE Trans. Fuzzy Syst. 16, 795–797 (2008)

    Article  Google Scholar 

  51. V. Torra, Y. Narukawa, M. Sugeno (eds.), Non-Additive Measures (Springer, Berlin, 2014)

    MATH  Google Scholar 

  52. Z. Wang, G. Klir, Fuzzy Measure Theory (Plenum Press, New York, 1992)

    Book  MATH  Google Scholar 

  53. W. Wang, Z. Wang, G.J. Klir, Genetic algorithms for determining fuzzy measures from data. J. Intell. Fuzzy Syst. 6, 171–183 (1998)

    Google Scholar 

  54. Z. Wang, K.S. Leung, J. Wang, Determining nonnegative monotone set functions based on Sugeno’s integral: an application of genetic algorithms. Fuzzy Sets Syst. 112, 155–164 (2000)

    Article  MathSciNet  Google Scholar 

  55. S. Weber, Measures of fuzzy sets and measures on fuzziness. Fuzzy Sets Syst. 13, 114–138 (1984)

    Article  MathSciNet  Google Scholar 

  56. R.R. Yager, The induced fuzzy integral aggregation operator. Int. J. Intell. Syst. 17, 1049–1065 (2002)

    Article  MATH  Google Scholar 

  57. R.R. Yager, Generalized OWA aggregation operators. Fuzzy Optim. Decis. Making 3, 93–107 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. R.R. Yager, Norms induced from OWA operators. IEEE Trans. Fuzzy Syst. 18, 57–66 (2010)

    Article  Google Scholar 

  59. R.R. Yager, Multicriteria decision-making using fuzzy measures. Cybern. Syst. 46, 150–171 (2015)

    Article  Google Scholar 

  60. R.R. Yager, V. Kreinovich, Universal approximation theorem for uninorm-based fuzzy systems modeling. Fuzzy Sets Syst. 140, 331–339 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  61. L. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Beliakov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beliakov, G., Bustince Sola, H., Calvo Sánchez, T. (2016). Fuzzy Integrals. In: A Practical Guide to Averaging Functions. Studies in Fuzziness and Soft Computing, vol 329. Springer, Cham. https://doi.org/10.1007/978-3-319-24753-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24753-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24751-9

  • Online ISBN: 978-3-319-24753-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics