Skip to main content

Ordered Weighted Averaging

  • Chapter
  • First Online:
A Practical Guide to Averaging Functions

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 329))

  • 1670 Accesses

Abstract

The focus of this chapter is on OWA functions. The formal definitions and the main properties of OWA are presented. Some extensions of the OWA functions are discussed in detail. Various methods of fitting OWA functions to empirical data are presented. This chapter ends with the discussion of the median functions and order statistics as the special cases of OWA functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I.e., Q is a monotone increasing function \([0,1]\rightarrow [0,1]\), \(Q(0)=0,Q(1)=1\) whose value Q(t) represents the degree to which t satisfies the fuzzy concept represented by the quantifier.

  2. 2.

    This is an informal definition. The proper definition involves the concepts of distributions and measures, see, e.g., [Rud91].

  3. 3.

    Note that in OWA, weighted median and ordinal OWA, \(x_{(k)}\) denotes the k-th largest element of \(\mathbf {x}\).

References

  1. B.S. Ahn, On the properties of OWA operator weights functions with constant level of orness. IEEE Trans. Fuzzy Syst. 14, 511–515 (2006)

    Article  Google Scholar 

  2. G. Beliakov, Shape preserving approximation using least squares splines. Approximation Theor. Appl. 16, 80–98 (2000)

    MathSciNet  MATH  Google Scholar 

  3. G. Beliakov, “Shape preserving splines in constructing WOWA operators: Comment on paper by V. Torra in Fuzzy Sets and Systems 113, 389–396”. Fuzzy Sets and Systems 121(2001), 549–550 (2000)

    Google Scholar 

  4. G. Beliakov, How to build aggregation operators from data? Int. J. Intell. Syst. 18, 903–923 (2003)

    Article  MATH  Google Scholar 

  5. G. Beliakov, Learning weights in the generalized OWA operators. Fuzzy Optim. Decis. Making 4, 119–130 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Beliakov, A method of introducing weights into OWA operators and other symmetric functions, in Uncertainty Modeling. Dedicated to B. Kovalerchuk, ed. by V. Kreinovich (Springer, Berlin, 2016)

    Google Scholar 

  7. G. Beliakov, S. James, Induced ordered weighted averaging operators, in Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice, ed. by R.R. Yager, J. Kacprzyk, G. Beliakov (Springer, Heidelberg, 2011), pp. 29–47

    Chapter  Google Scholar 

  8. G. Beliakov, S. James, G. Li, Learning Choquet-integralbased metrics for semisupervised clustering. IEEE Trans. Fuzzy Syst. 19, 562–574 (2011)

    Article  Google Scholar 

  9. G. Beliakov, R. Mesiar, L. Valaskova, Fitting generated aggregation operators to empirical data. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 12, 219–236 (2004)

    Google Scholar 

  10. T. Calvo, A. Kolesárová, M. Komorníková, R. Mesiar, Aggregation operators: properties, classes and construction methods, in Aggregation Operators. New Trends and Applications, ed. by T. Calvo, G. Mayor, R. Mesiar (Physica - Verlag, Heidelberg, 2002), pp. 3–104

    Google Scholar 

  11. M. Carbonell, M. Mas, G. Mayor, On a class of monotonic extended OWA operators, in 6th IEEE International Conference on Fuzzy Systems, vol. III (Barcelona, Spain, 1997), pp. 1695–1700

    Google Scholar 

  12. F. Chiclana, E. Herrera-Viedma, F. Herrera, S. Alonso, Induced ordered weighted geometric operators and their usein the aggregation of multiplicative preference relations. Int. J. Intell. Syst. 19, 233–255 (2004)

    Article  MATH  Google Scholar 

  13. F. Chiclana, E. Herrera-Viedma, F. Herrera, S. Alonso, Some induced ordered weighted averaging operators and their use for solving group decision-making problems based on fuzzy preference relations”. Eur. J. Oper. Res. 182, 383–399 (2007)

    Article  MATH  Google Scholar 

  14. A. Emrouznejad, M. Marra, Ordered weighted averaging operators 1988–2014: a citation-based literature survey. Int. J. Intell. Syst. 29, 994–1014 (2014)

    Article  Google Scholar 

  15. D. Filev, R.R. Yager, On the issue of obtaining OWA operator weights. Fuzzy Sets Syst. 94, 157–169 (1998)

    Article  MathSciNet  Google Scholar 

  16. R. Fuller, P. Majlender, An analytic approach for obtaining maximal entropy OWA operator weights. Fuzzy Sets Syst. 124, 53–57 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Fuller, P. Majlender, On obtaining minimal variability OWA operator weights. Fuzzy Sets Syst. 136, 203–215 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Herrera, E. Herrera-Viedma, A study of the origin and uses of the ordered weighted geometric operator in multicriteria decision making. Int. J. Intell. Syst. 18, 689–707 (2003)

    Article  MATH  Google Scholar 

  19. A. Kishor, A.K. Singh, N.R. Pal, Orness measure of OWA operators: a new approach. IEEE Trans. Fuzzy Syst. 22, 1039–1045 (2014)

    Article  Google Scholar 

  20. A. Kolesárová, R. Mesiar, G. Mayor, Weighted ordinal means. Inf. Sci. 177, 3822–3830 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Lin, Y. Jiang, Some hybrid weighted averaging operators and their application to decision making. Inf. Fusion 16, 18–28 (2014)

    Article  Google Scholar 

  22. X. Liu, On the properties of equidifferent RIM quantifier with generating function. Int. J. Gen. Syst. 34, 579–594 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. X. Liu, The solution equivalence of minimax disparity and minimum variance problems for OWA operators. Int. J. Approx. Reasoning 45, 68–81 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Llamazares, Constructing Choquet integral-based operators that generalize weighted means and OWA operators. Inf. Fusion 23, 131–138 (2015)

    Article  Google Scholar 

  25. J.M. Merigó, A.M. Gil-Lafuente, The induced generalized OWA operator. Inf. Sci. 179, 729–741 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.M. Merigó, A unified model between the weighted average and the induced OWA operator. Expert Syst. Appl. 38, 11560–11572 (2011)

    Article  Google Scholar 

  27. H.B. Mitchell D.D. Estrakh, A modified OWA operator and its use in lossless DPCM image compression. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 5, 429–436 (1997)

    Google Scholar 

  28. H.B. Mitchell, D.D. Estrakh, An OWA operator with fuzzy ranks. Int. J. Intell. Syst. 13, 59–81 (1998)

    Article  MATH  Google Scholar 

  29. H.B. Mitchell, P.A. Schaefer, Multiple priorities in an induced ordered weighted averaging operator. Int. J. Intell. Syst. 15, 317–327 (2000)

    Article  MATH  Google Scholar 

  30. Y. Narukawa, V. Torra, Fuzzy measure and probability distributions: distorted probabilities. IEEE Trans. Fuzzy Syst. 13, 617–629 (2005)

    Article  Google Scholar 

  31. M.O. O’Hagan, Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic, in 22nd Annual IEEE Asilomar Conference on Signals, Systems, Computers, Pacific Grove, CA, 1988, pp. 681–689

    Google Scholar 

  32. G. Pasi, R.R. Yager, Modeling the concept of majority opinion in group decision making. Inf. Sci. 176, 390–414 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. W. Rudin, Functional Analysis (McGraw-Hill, New York, 1991)

    MATH  Google Scholar 

  34. L.L. Schumaker, On shape preserving quadratic interpolation. SIAM J. Numer. Anal. 20, 854–864 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. V. Torra, The weighted OWA operator. Int. J. Intell. Syst. 12, 153–166 (1997)

    Article  MATH  Google Scholar 

  36. V. Torra, On some relationships between WOWA operator and the Choquet integral, in 8th International Conference on Information Processing and Management of Uncertainty, Paris, 1998, pp. 818–824

    Google Scholar 

  37. V. Torra, TheWOWA operator and the interpolation function W*: Chen and Otto’s interpolation revisited. Fuzzy Sets Syst. 113, 389–396 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. V. Torra, Learning weights for the quasi-weighted means. IEEE Trans. Fuzzy Syst. 10, 653–666 (2002)

    Article  MathSciNet  Google Scholar 

  39. V. Torra, OWA operators in data modeling and reidentification. IEEE Trans. Fuzzy Syst. 12, 652–660 (2004)

    Article  Google Scholar 

  40. V. Torra, Y. Narukawa, Modeling Decisions. Information Fusion and Aggregation Operators. (Springer, Berlin, 2007)

    Google Scholar 

  41. L. Troiano, R.R. Yager A meaure of dispersion for OWA operators, in Proceedings of the 11th IFSA World Congress, eds. by Y. Liu, G. Chen, M. Ying (Tsinghua University Press and Springer, Beijing, 2005), pp. 82–87

    Google Scholar 

  42. L. Troiano, R.R. Yager, Recursive and iterative OWA operators. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 13, 579–599 (2005)

    Google Scholar 

  43. L. Troiano, R.R. Yager, On the relationship between the quantifier threshold and OWA operators, in Modeling Decisions for Artificial Intelligence, eds. by V. Torra, Y. Narukawa, A. Valls, J. Domingo-Ferrer, vol. LNAI 3885 (Springer, Heidelberg, 2006), pp. 215–226

    Google Scholar 

  44. Y.M. Wang, C. Parkan, A minimax disparity approach for obtaining OWA operator weights. Inf. Sci. 175, 20–29 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Z.S. Xu, An overview of methods for determining OWA weights. Int. J. Intell. Syst. 20, 843–865 (2005)

    Article  MATH  Google Scholar 

  46. Z.S. Xu, Q.L. Da, The ordered weighted geometric averaging operator. Int. J. Intell. Syst. 17, 709–716 (2002)

    Article  MATH  Google Scholar 

  47. R.R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)

    Google Scholar 

  48. R.R. Yager, Connectives and quantifiers in fuzzy sets. Fuzzy Sets Syst. 40, 39–76 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. R.R. Yager, Families of OWA operators. Fuzzy Sets Syst. 59, 125–148 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  50. R.R. Yager, Measures of entropy and fuzziness related to aggregation operators. Inf. Sci. 82, 147–166 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  51. R.R. Yager, Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst. 11, 49–73 (1996)

    Article  Google Scholar 

  52. R.R. Yager, Fusion of ordinal information using weighted median aggregation. Int. J. Approx. Reasoning 18, 35–52 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. R.R. Yager, The induced fuzzy integral aggregation operator. Int. J. Intell. Syst. 17, 1049–1065 (2002)

    Article  MATH  Google Scholar 

  54. R.R. Yager, Using fuzzy methods to model nearest neighbor rules. IEEE Trans. Syst. Man Cybern. Part B Cybern. 32, 512–525 (2002)

    Google Scholar 

  55. R.R. Yager, Choquet aggregation using order inducing variables. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 12, 69–88 (2004)

    Google Scholar 

  56. R.R. Yager, Generalized OWA aggregation operators. Fuzzy Optim. Decis. Making 3, 93–107 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  57. R.R. Yager, Centered OWA operators. Soft Comput. 11, 631–639 (2007)

    Article  MATH  Google Scholar 

  58. R.R. Yager, Using stress functions to obtain OWA operators. IEEE Trans. Fuzzy Syst. 15, 1122–1129 (2007)

    Article  Google Scholar 

  59. R.R. Yager, Norms induced from OWA operators. IEEE Trans. Fuzzy Syst. 18, 57–66 (2010)

    Article  Google Scholar 

  60. R.R. Yager, N. Alajlan, A generalized framework for mean aggregation: toward the modeling of cognitive aspects. Inf. Fusion 17, 65–73 (2014)

    Article  Google Scholar 

  61. R.R. Yager, N. Alajlan, On characterizing features of OWA aggregation operators. Fuzzy Optim. Decis. Making 13, 1–32 (2014)

    Article  MathSciNet  Google Scholar 

  62. R.R. Yager, D. Filev, Essentials of Fuzzy Modelling and Control (Wiley, New York, 1994)

    Google Scholar 

  63. R.R. Yager, D.P. Filev, Induced ordered weighted averaging operators. IEEE Trans. Syst. Man Cybern. Part B Cybern. 20, 141–150 (1999)

    Google Scholar 

  64. R.R. Yager, J. Kacprzyk (eds.), The Ordered Weighted Averaging Operators. Theory and Applications (Kluwer, Boston, 1997)

    Google Scholar 

  65. R.R. Yager, J. Kacprzyk, G. Beliakov (eds.), Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice (Springer, Berlin, 2011)

    Google Scholar 

  66. R.R. Yager, V. Kreinovich, Universal approximation theorem for uninorm-based fuzzy systems modeling. Fuzzy Sets Syst. 140, 331–339 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  67. M. Zarghami, F. Szidarovszky, R. Ardakanian, Sensitivity analysis of the OWA operator. IEEE Trans. Syst. Man Cybern. Part B 38, 547–552 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Beliakov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beliakov, G., Bustince Sola, H., Calvo Sánchez, T. (2016). Ordered Weighted Averaging. In: A Practical Guide to Averaging Functions. Studies in Fuzziness and Soft Computing, vol 329. Springer, Cham. https://doi.org/10.1007/978-3-319-24753-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24753-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24751-9

  • Online ISBN: 978-3-319-24753-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics