Skip to main content

Na, K-ATPase α4: An Isoform Dedicated to Sperm Function

  • Chapter
  • First Online:
Regulation of Membrane Na+-K+ ATPase

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 15))

  • 1087 Accesses

Abstract

Several proteins that play essential roles in the cell exist in multiple different molecular forms. This variability in structure often results in the production of isoforms with properties that are distinct from those of the original protein. The discovery and study of isoforms represents one of the most fascinating areas in biology, since it has uncovered the elaborate mechanisms that cells have developed to fulfill specific tasks. One protein system characterized by a high molecular heterogeneity is the Na-K-ATPase, the ion transport mechanism that maintains the transmembrane Na+ and K+ concentrations across the plasma membrane of cells. Na, K-ATPase results from the association of different molecular isoforms of an α- and a β-subunit. One of the Na, K-ATPase α polypeptides, α4, is solely produced in male germ cells of the testis, where it serves an important role in sperm function. This review discusses the particular expression, functional properties, regulation, mechanism of action, and role of Na-K-ATPase α4 in the context of the physiology of the male gamete. The current experimental evidence shows that the appearance of α4 during evolution is not a redundant event but rather a sophisticated mechanism to adapt Na+ and K+ active transport to the requirements of sperm, which carry the amazing mission of swimming relatively long distances to find and fertilize the egg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71:511–535

    Article  CAS  PubMed  Google Scholar 

  2. Skou JC (2004) The identification of the sodium pump. Biosci Rep 24:436–451

    Article  PubMed  Google Scholar 

  3. Apell HJ, Schneeberger A, Sokolov VS (1998) Partial reactions of the Na, K-ATPase: kinetic analysis and transport properties. Acta Physiol Scand Suppl 643:235–245

    CAS  PubMed  Google Scholar 

  4. Benarroch EE (2011) Na+, K+-ATPase: functions in the nervous system and involvement in neurologic disease. Neurology 76:287–293

    Article  PubMed  Google Scholar 

  5. Clarke RJ, Fan X (2011) Pumping ions. Clin Exp Pharmacol Physiol 38:726–733

    Article  CAS  PubMed  Google Scholar 

  6. Feraille E, Doucet A (2001) Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 81:345–418

    CAS  PubMed  Google Scholar 

  7. Morth JP, Pedersen BP, Buch-Pedersen MJ et al (2011) A structural overview of the plasma membrane Na+, K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol 12:60–70

    Article  CAS  PubMed  Google Scholar 

  8. Bublitz M, Poulsen H, Morth JP et al (2010) In and out of the cation pumps: P-type ATPase structure revisited. Curr Opin Struct Biol 20:431–439

    Article  CAS  PubMed  Google Scholar 

  9. Morth JP, Pedersen BP, Toustrup-Jensen MS et al (2007) Crystal structure of the sodium-potassium pump. Nature 450:1043–1049

    Article  CAS  PubMed  Google Scholar 

  10. Geering K (2008) Functional roles of Na, K-ATPase subunits. Curr Opin Nephrol Hypertens 17:526–532

    Article  CAS  PubMed  Google Scholar 

  11. Geering K (2001) The functional role of beta subunits in oligomeric P-type ATPases. J Bioenerg Biomembr 33:425–438

    Article  CAS  PubMed  Google Scholar 

  12. Geering K (2005) Function of FXYD proteins, regulators of Na, K-ATPase. J Bioenerg Biomembr 37:387–392

    Article  CAS  PubMed  Google Scholar 

  13. Garty H, Karlish SJ (2005) FXYD proteins: tissue-specific regulators of the Na, K-ATPase. Semin Nephrol 25:304–311

    Article  CAS  PubMed  Google Scholar 

  14. Sweadner KJ, Arystarkhova E, Donnet C, Wetzel RK (2003) FXYD proteins as regulators of the Na, K-ATPase in the kidney. Ann N Y Acad Sci 986:382–387

    Article  CAS  PubMed  Google Scholar 

  15. Sweadner KJ, Rael E (2000) The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics 68:41–56

    Article  CAS  PubMed  Google Scholar 

  16. Blanco G (2005) Na, K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin Nephrol 25:292–303

    Article  CAS  PubMed  Google Scholar 

  17. Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    CAS  PubMed  Google Scholar 

  18. Mobasheri A, Avila J, Cozar-Castellano I et al (2000) Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep 20:51–91

    Article  CAS  PubMed  Google Scholar 

  19. Sweadner KJ (1993) Multiple digitalis receptors: a molecular perspective. Trends Cardiovasc Med 3:2–6

    Article  CAS  PubMed  Google Scholar 

  20. Jewell EA, Shamraj OI, Lingrel JB (1992) Isoforms of the alpha subunit of Na, K-ATPase and their significance. Acta Physiol Scand Suppl 607:161–169

    CAS  PubMed  Google Scholar 

  21. Lingrel JB (1992) Na, K-ATPase: isoform structure, function, and expression. J Bioenerg Biomembr 24:263–270

    CAS  PubMed  Google Scholar 

  22. Lingrel JB, Orlowski J, Shull MM et al (1990) Molecular genetics of Na, K-ATPase. Prog Nucleic Acid Res Mol Biol 38:37–89

    Article  CAS  PubMed  Google Scholar 

  23. Shull GE, Greeb J, Lingrel JB (1986) Molecular cloning of three distinct forms of the Na+, K+-ATPase alpha-subunit from rat brain. Biochemistry 25:8125–8132

    Article  CAS  PubMed  Google Scholar 

  24. Lane LK, Shull MM, Whitmer KR et al (1989) Characterization of two genes for the human Na, K-ATPase beta subunit. Genomics 5:445–453

    Article  CAS  PubMed  Google Scholar 

  25. Shamraj OI, Lingrel JB (1994) A putative fourth Na+, K(+)-ATPase alpha-subunit gene is expressed in testis. Proc Natl Acad Sci U S A 91:12952–12956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shull MM, Lingrel JB (1987) Multiple genes encode the human Na+, K+-ATPase catalytic subunit. Proc Natl Acad Sci U S A 84:4039–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rajarao SJ, Canfield VA, Mohideen MA et al (2001) The repertoire of Na, K-ATPase alpha and beta subunit genes expressed in the zebrafish, Danio rerio. Genome Res 11:1211–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Canfield VA, Xu KY, D’Aquila T et al (1992) Molecular cloning and characterization of Na, K-ATPase from Hydra vulgaris: implications for enzyme evolution and ouabain sensitivity. New Biol 4:339–348

    CAS  PubMed  Google Scholar 

  29. Munzer JS, Daly SE, Jewell-Motz EA et al (1994) Tissue- and isoform-specific kinetic behavior of the Na, K-ATPase. J Biol Chem 269:16668–16676

    CAS  PubMed  Google Scholar 

  30. Segall L, Daly SE, Blostein R (2001) Mechanistic basis for kinetic differences between the rat alpha 1, alpha 2, and alpha 3 isoforms of the Na, K-ATPase. J Biol Chem 276:31535–31541

    Article  CAS  PubMed  Google Scholar 

  31. Muller-Ehmsen J, Juvvadi P, Thompson CB et al (2001) Ouabain and substrate affinities of human Na(+)-K(+)-ATPase alpha(1)beta(1), alpha(2)beta(1), and alpha(3)beta(1) when expressed separately in yeast cells. Am J Physiol Cell Physiol 281:C1355–C1364

    CAS  PubMed  Google Scholar 

  32. Crambert G, Hasler U, Beggah AT et al (2000) Transport and pharmacological properties of nine different human Na, K-ATPase isozymes. J Biol Chem 275:1976–1986

    Article  CAS  PubMed  Google Scholar 

  33. Blanco G (2005) The NA/K-ATPase and its isozymes: what we have learned using the baculovirus expression system. Front Biosci 10:2397–2411

    Article  CAS  PubMed  Google Scholar 

  34. James PF, Grupp IL, Grupp G et al (1999) Identification of a specific role for the Na, K-ATPase alpha 2 isoform as a regulator of calcium in the heart. Mol Cell 3:555–563

    Article  CAS  PubMed  Google Scholar 

  35. He S, Shelly DA, Moseley AE et al (2001) The alpha(1)- and alpha(2)-isoforms of Na-K-ATPase play different roles in skeletal muscle contractility. Am J Physiol Regul Integr Comp Physiol 281:R917–R925

    CAS  PubMed  Google Scholar 

  36. Moseley AE, Huddleson JP, Bohanan CS et al (2005) Genetic profiling reveals global changes in multiple biological pathways in the hearts of Na, K-ATPase alpha 1 isoform haploinsufficient mice. Cell Physiol Biochem 15:145–158

    Article  CAS  PubMed  Google Scholar 

  37. Moseley AE, Williams MT, Schaefer TL et al (2007) Deficiency in Na, K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice. J Neurosci 27:616–626

    Article  CAS  PubMed  Google Scholar 

  38. DeAndrade MP, Yokoi F, van Groen T et al (2011) Characterization of Atp1a3 mutant mice as a model of rapid-onset dystonia with parkinsonism. Behav Brain Res 216:659–665

    Article  CAS  PubMed  Google Scholar 

  39. Kirshenbaum GS, Saltzman K, Rose B et al (2011) Decreased neuronal Na+, K+-ATPase activity in Atp1a3 heterozygous mice increases susceptibility to depression-like endophenotypes by chronic variable stress. Genes Brain Behav 10:542–550

    Article  CAS  PubMed  Google Scholar 

  40. Quinn PJ, White IG, Wirrick BR (1966) The effect of dilution on the concentration of sodium, potassium, calcium and magnesium in ram and bull spermatozoa. J Reprod Fertil 12:131–138

    Article  CAS  PubMed  Google Scholar 

  41. Uesugi S, Yamazoe S (1966) Presence of sodium-potassium-stimulated ATPase in boar epididymal spermatozoon. Nature 209:403

    Article  CAS  PubMed  Google Scholar 

  42. Hang HY, Feng BY, Zhang ZY (1990) Studies on relationship between Na, K-ATPase activity and sperm capacitation in guinea pig. Sci China B 33:1304–1310

    CAS  PubMed  Google Scholar 

  43. Mrsny RJ, Siiteri JE, Meizel S (1984) Hamster sperm Na+, K+-adenosine triphosphatase: increased activity during capacitation in vitro and its relationship to cyclic nucleotides. Biol Reprod 30:573–584

    Article  CAS  PubMed  Google Scholar 

  44. Quinn PJ, White IG (1968) Distribution of adenosinetriphosphatase activity in ram and bull spermatozoa. J Reprod Fertil 15:449–452

    Article  CAS  PubMed  Google Scholar 

  45. McGrady AV, Meschke D (1982) Tracer-flux analysis of sodium and potassium permeability in differentiating mouse spermatozoa. J Reprod Fertil 66:67–74

    Article  CAS  PubMed  Google Scholar 

  46. O’Donnell JM, Ellory JC (1970) The binding of ouabain to spermatozoa of boar and ram. J Reprod Fertil 23:181–184

    Article  PubMed  Google Scholar 

  47. McGrady A (1979) The effect of ouabain on membrane potential and flagellar wave in ejaculated bull spermatozoa. J Reprod Fertil 56:549–553

    Article  CAS  PubMed  Google Scholar 

  48. Mrsny RJ, Meizel S (1981) Potassium ion influx and Na+, K+-ATPase activity are required for the hamster sperm acrosome reaction. J Cell Biol 91:77–82

    Article  CAS  PubMed  Google Scholar 

  49. Thundathil JC, Anzar M, Buhr MM (2006) Na+/K+ATPase as a signaling molecule during bovine sperm capacitation. Biol Reprod 75:308–317

    Article  CAS  PubMed  Google Scholar 

  50. Clausen MJ, Nissen P, Poulsen H (2011) The pumps that fuel a sperm’s journey. Biochem Soc Trans 39:741–745

    Article  CAS  PubMed  Google Scholar 

  51. Underhill DA, Canfield VA, Dahl JP et al (1999) The Na, K-ATPase alpha4 gene (Atp1a4) encodes a ouabain-resistant alpha subunit and is tightly linked to the alpha2 gene (Atp1a2) on mouse chromosome 1. Biochemistry 38:14746–14751

    Article  CAS  PubMed  Google Scholar 

  52. Keryanov S, Gardner KL (2002) Physical mapping and characterization of the human Na, K-ATPase isoform, ATP1A4. Gene 292:151–166

    Article  CAS  PubMed  Google Scholar 

  53. Blanco G, Melton RJ, Sanchez G et al (1999) Functional characterization of a testes-specific alpha-subunit isoform of the sodium/potassium adenosinetriphosphatase. Biochemistry 38:13661–13669

    Article  CAS  PubMed  Google Scholar 

  54. Woo AL, James PF, Lingrel JB (1999) Characterization of the fourth alpha isoform of the Na, K-ATPase. J Membr Biol 169:39–44

    Article  CAS  PubMed  Google Scholar 

  55. Hlivko JT, Chakraborty S, Hlivko TJ et al (2006) The human Na, K-ATPase alpha 4 isoform is a ouabain-sensitive alpha isoform that is expressed in sperm. Mol Reprod Dev 73:101–115

    Article  CAS  PubMed  Google Scholar 

  56. Sanchez G, Nguyen AN, Timmerberg B et al (2006) The Na, K-ATPase alpha4 isoform from humans has distinct enzymatic properties and is important for sperm motility. Mol Hum Reprod 12:565–576

    Article  CAS  PubMed  Google Scholar 

  57. Blanco G, Sanchez G, Melton RJ et al (2000) The alpha4 isoform of the Na, K-ATPase is expressed in the germ cells of the testes. J Histochem Cytochem 48:1023–1032

    Article  CAS  PubMed  Google Scholar 

  58. Woo AL, James PF, Lingrel JB (2000) Sperm motility is dependent on a unique isoform of the Na, K-ATPase. J Biol Chem 275:20693–20699

    Article  CAS  PubMed  Google Scholar 

  59. Wagoner K, Sanchez G, Nguyen AN et al (2005) Different expression and activity of the alpha1 and alpha4 isoforms of the Na, K-ATPase during rat male germ cell ontogeny. Reproduction 130:627–641

    Article  CAS  PubMed  Google Scholar 

  60. Jimenez T, Sanchez G, McDermott JP et al (2011) Increased expression of the Na, K-ATPase alpha4 isoform enhances sperm motility in transgenic mice. Biol Reprod 84:153–161

    Article  CAS  PubMed  Google Scholar 

  61. Marty MS, Chapin RE, Parks LG et al (2003) Development and maturation of the male reproductive system. Birth Defects Res B Dev Reprod Toxicol 68:125–136

    Article  CAS  PubMed  Google Scholar 

  62. Blanco G (2003) Functional expression of the alpha4 isoform of the Na, K-ATPase in both diploid and haploid germ cells of male rats. Ann N Y Acad Sci 986:536–538

    Article  CAS  PubMed  Google Scholar 

  63. McDermott JP, Sanchez G, Chennathukuzhi V et al (2012) Green fluorescence protein driven by the Na, K-ATPase alpha4 isoform promoter is expressed only in male germ cells of mouse testis. J Assist Reprod Genet 29:1313–1325

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rodova M, Nguyen AN, Blanco G (2006) The transcription factor CREMtau and cAMP regulate promoter activity of the Na, K-ATPase alpha4 isoform. Mol Reprod Dev 73:1435–1447

    Article  CAS  PubMed  Google Scholar 

  65. Hogeveen KN, Sassone-Corsi P (2006) Regulation of gene expression in post-meiotic male germ cells: CREM-signalling pathways and male fertility. Hum Fertil (Camb) 9:73–79

    Article  CAS  Google Scholar 

  66. Nantel F, Sassone-Corsi P (1996) CREM: a transcriptional master switch during the spermatogenesis differentiation program. Front Biosci 1:d266–d269

    Article  CAS  PubMed  Google Scholar 

  67. Jimenez T, Sanchez G, Wertheimer E et al (2010) Activity of the Na, K-ATPase alpha4 isoform is important for membrane potential, intracellular Ca2+, and pH to maintain motility in rat spermatozoa. Reproduction 139:835–845

    Article  CAS  PubMed  Google Scholar 

  68. Calzada L, Tellez J (1997) Defective function of membrane potential (psi) on sperm of infertile men. Arch Androl 38:151–155

    Article  CAS  PubMed  Google Scholar 

  69. Darszon A, Labarca P, Nishigaki T et al (1999) Ion channels in sperm physiology. Physiol Rev 79:481–510

    CAS  PubMed  Google Scholar 

  70. Woo AL, James PF, Lingrel JB (2002) Roles of the Na, K-ATPase alpha4 isoform and the Na+/H+ exchanger in sperm motility. Mol Reprod Dev 62:348–356

    Article  CAS  PubMed  Google Scholar 

  71. Bedu-Addo K, Costello S, Harper C et al (2008) Mobilisation of stored calcium in the neck region of human sperm—a mechanism for regulation of flagellar activity. Int J Dev Biol 52:615–626

    Article  CAS  PubMed  Google Scholar 

  72. Krasznai Z, Krasznai ZT, Morisawa M et al (2006) Role of the Na+/Ca2+ exchanger in calcium homeostasis and human sperm motility regulation. Cell Motil Cytoskeleton 63:66–76

    Article  CAS  PubMed  Google Scholar 

  73. Newton LD, Krishnakumar S, Menon AG et al (2010) Na+/K+ATPase regulates sperm capacitation through a mechanism involving kinases and redistribution of its testis-specific isoform. Mol Reprod Dev 77:136–148

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yanagimachi R (1994) Fertility of mammalian spermatozoa: its development and relativity. Zygote 2:371–372

    Article  CAS  PubMed  Google Scholar 

  75. Jimenez T, Sanchez G, Blanco G (2012) Activity of the Na, K-ATPase alpha4 isoform is regulated during sperm capacitation to support sperm motility. J Androl 33:1047–1057

    Article  CAS  PubMed  Google Scholar 

  76. Jimenez T, McDermott JP, Sanchez G et al (2011) Na, K-ATPase alpha4 isoform is essential for sperm fertility. Proc Natl Acad Sci U S A 108:644–649

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by National Institutes of Health grant U01 HD080423.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sánchez, G., Blanco, G. (2016). Na, K-ATPase α4: An Isoform Dedicated to Sperm Function. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_5

Download citation

Publish with us

Policies and ethics