Skip to main content

Calcium Controls the P2-ATPase Mediated Homeostasis: Essential Role of NaAF

  • Chapter
  • First Online:
  • 1082 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 15))

Abstract

This chapter reveals a new unique story of Ca-signaling in upholding cellular homeostasis. The cytosolic activator (regulatory) protein, NaAF (of 170 kDa mass), for the ubiquitous P2-ATPase (and 80 kDa HAF solely for the gastric H/K-ATPase) is essential for P2-ATPase function. The NaAF and HAF function as the allosteric operator-cum gate-keeper of the dual channel P2-ATPase system (where mirror-image orientation of the two α-subunits serves as the membrane-embedded in-and-out gates) for simultaneous transport of two ions. The entire cyclic operation is in turn fine-tuned by local Ca (μM) as top (allosteric) controller of the P2-ATPase to maintain homeostasis. Thus at lower range Ca (<2) stimulates, but at higher range (>2) Ca abruptly inhibits the HAF-stimulated H/K-ATPase abolishing it at 4 μM Ca. At this point the (K ± HAF)-independent basal (Mg-dependent) activity of the H/K-ATPase acts as a provisional Ca-ATPase pump in an altered state to remove excess Ca, thus resuming the initial Ca-activated HAF-regulated state of a new cycle. Identical Ca-signaling operations also control the universal NaAF-regulated Na/K-ATPase system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  2. Berridge MJ (2012) Cell signalling biology. doi:10.1042/csb0001001 - 1011. www.cellsignallingbiology.org

  3. Ray TK, Nandi J (1986) K-stimulated pNPPase is not a partial reaction of the gastric (H, K)-transporting ATPase: evidence supporting a new model for the univalent cation transporting ATPase systems. Biochem J 233:231–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ray TK, Das PK, Zinkievich M, Nandi J (2012) Dual topology of the gastric proton pump: a bidirectional molecular motor for the simultaneous uphill transport of H and K. In: Battik M, Grimaldi N (eds) Gastrointestinal disorders: symptoms, treatment and prevention. Nova Science Publications, New York, pp 175–200

    Google Scholar 

  5. Ray TK (2013) Tissue-specific regulation of the Na, K-ATPase by the cytosolic NaAF: some thoughts on brain function [v1; ref status: awaiting peer review, http://f1000r.es/23v] F1000Research 2013, 2:241. doi: 10.12688/f1000research.2-241.v1

    Google Scholar 

  6. Nandi J, Ray TK (1986) Mechanism of gastric antisecretory effects of thiocyanate: further evidence for the thiocyanate induced impediment in gastric H, K-ATPase function. Arch Biochem Biophys 244:701–712

    Article  CAS  PubMed  Google Scholar 

  7. Nandi J, Das P, Levine RA, Ray TK (1988) Half of the Na, K-ATPase associated K-stimulated p-nitrophenyl phosphatase activity of gastric epithelial cells is exposed to the surface exterior. Biochem J 252:29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bandopadhyay S, Das PK, Wright MV et al (1987) Characteristics of a pure endogenous activator of the gastric H, K-ATPase system: evaluation of its role as a possible intracellular regulator. J Biol Chem 262:5664–5670

    CAS  PubMed  Google Scholar 

  9. Sen PC, Ray TK (1980) Control of K-stimulated adenosine triphosphatase of pig gastric microsomes: effects of lipid environment and the endogenous activator. Arch Biochem Biophys 202:8–17

    Article  CAS  PubMed  Google Scholar 

  10. Nandi J, Wright MV, Ray TK (1983) Effects of phospholipase A2 on gastric microsomal H, K-ATPase system: role of boundary lipids and the endogenous activator protein. Biochemistry 22:5814–5821

    Article  CAS  PubMed  Google Scholar 

  11. Ray TK, Das PK, Nandi J et al (1988) Characteristics of the isolated apical plasmalemma and intracellular tubulovesicles of the gastric acid secreting cells: demonstration of secretagogue-induced membrane mobilization. Biochemistry 27:8958–8968

    Article  CAS  PubMed  Google Scholar 

  12. Forte JG, Ganser AL, Ray TK (1976) The K+-stimulated ATPase from oxyntic glands of gastric mucosa. In: Kasbekar DK, Sachs G, Rehm WS (eds) Gastric hydrogen ion transport. Marcel Dekker, Inc., New York, pp 302–330

    Google Scholar 

  13. Perez JF, Ruiz MC, Michelangeli F (2001) Simultaneous measurement and imaging of intracellular Ca and H transport in rabbit gastric gland. J Physiol 537:735–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caroppo R, Gerbin A, Debellisw L et al (2001) Asymmetrical, agonist-induced fluctuations in local extracellular [Ca2+] in intact polarized epithelia. EMBO J 20:6316–6326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Head BP, Patel HH, Insel PA (2014) Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta 1838:532–545

    Article  CAS  PubMed  Google Scholar 

  16. Ray TK, Das P, Sen PC, Ray TK (2008) Current outlooks on the lipids of gastric membranes and beyond. Trend Cell Mol Biol 3:69–78

    CAS  Google Scholar 

  17. Fujimoto T, Nakade S, Miyawaki A, Mikoshiba K, Ogawa K (1992) Localization of inositol 1,4,5 triphosphate receptor protein in plasmalemmal caveolae. J Cell Biol 119:1507–1513

    Article  PubMed  Google Scholar 

  18. Fujimoto T (2000) Cell biology of caveolae and its implication for clinical medicine. Nagoya J Med Sci 63:9–18

    CAS  PubMed  Google Scholar 

  19. Lee MG, Xu X, Zeng W et al (1997) Polarized expression of Ca-pumps in pancreatic and salivary gland cells: role in initiation and propagation of Ca-waves. J Biol Chem 272:15771–15776

    Article  CAS  PubMed  Google Scholar 

  20. Bai M, Trivedi S, Brown EM (1998) Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J Biol Chem 273:23605–23610

    Article  CAS  PubMed  Google Scholar 

  21. Pidasheva S, Grant M, Canaff L et al (2006) Calcium-sensing receptor dimerizes in the endoplasmic reticulum: biochemical and biophysical characterization of CASR mutants retained intracellularly. Hum Mol Genet 15:2200–2209

    Article  CAS  PubMed  Google Scholar 

  22. Ward DT, Brown EM, Harris HW (1998) Disulfide bonds in the extracellular calcium-polyvalent cation-sensing receptor correlate with dimer formation and its response to divalent cations in vitro. J Biol Chem 273:14476–14483

    Article  CAS  PubMed  Google Scholar 

  23. Carafoli E (2004) Special issue: calcium signaling and disease. Biochem Biophys Res Commun 322:1097

    Article  CAS  Google Scholar 

  24. Luan Z, Reddig K, Li HS (2014) Loss of Na, K-ATPase in Drosophila photoreceptors leads to blindness and age-dependent neurodegeneration. Exp Neurol 261:791–801

    Article  CAS  PubMed  Google Scholar 

  25. Ray TK (2013) The parietal cell gastric H, K-ATPase also functions as the Na, K-ATPase and Ca-ATPase in altered states. F1000Research 2:165. doi: 10.12688/f1000research.2-165.v2

    Google Scholar 

Download references

Acknowledgements

The work was supported in part by the USPHS grant, AM19531, and RCDA (Research Career Development Award), AM 00623, from the NIH and Surgical Research Fund of SUNY-Upstate Medical Center, NY 13210. The author is currently involved in mind-body Research with Vivekananda Mind-Body Research Institute (VMBRI) associated with the Ramakrishna-Sarada Vedanta Center of Phoenix, Tempe, AZ 85281

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ray, T. (2016). Calcium Controls the P2-ATPase Mediated Homeostasis: Essential Role of NaAF. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_4

Download citation

Publish with us

Policies and ethics