Skip to main content

Metal Based Compounds, Modulators of Na, K-ATPase with Anticancer Activity

  • Chapter
  • First Online:
Regulation of Membrane Na+-K+ ATPase

Abstract

Involvement of Na, K-ATPase in different biological processes and its overexpression in pathological states enables its use as a target in anticancer studies. For the past 10 years, a variety of metal-based complexes have been synthesized which offer good tolerance, potent action, selectivity, and less toxicity in cancer treatment. This chapter gives an overview of the interaction of platinum, gold, ruthenium, vanadium, and palladium complexes with Na, K-ATPase and their effect on the enzyme function and activity. The mechanism of Na, K-ATPase activity inhibition with metal based complexes is supported with extensive kinetic analysis. The inhibition can be achieved via the complexes interaction with –SH groups of the enzyme and cleavage of the disulfide bridges, required for the enzyme functionality. Moreover, the inhibitory effect of selected compounds can be prevented and recovered by the addition of –SH donors, l-cysteine and glutathione, the biomolecules usually present in physiological liquids. The conclusion is made that gold, ruthenium, and palladium complexes are expected to overcome platinum complexes toxic side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jungwirth U, Kowol CR, Keppler BK et al (2011) Anticancer activity of metal complexes: involvement of redox processes. Antioxid Redox Signal 15:1085–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bruijnincx PCA, Sadler PJ (2009) Controlling platinum, ruthenium, and osmium reactivity for anticancer drug design. In: van Rudi E, Colin DH (eds) Advances in inorganic chemistry, vol 61. Academic, New York, pp 1–62

    Google Scholar 

  3. Gabbiani C (2009) Proteins as possible targets for antitumor metal complexes: biophysical studies of their interaction. Firenze University Press, Firenze, Italy

    Google Scholar 

  4. Krinulović K, Bugarčić Ž, Vrvić M et al (2006) Prevention and recovery of (μ3-diethylentriamino)-chloro-palladium(II)-chloride induced inhibition of Na/K-ATPase by SH containing ligands—L-cysteine and glutathione. Toxicol In Vitro 20:1292–1299

    Article  PubMed  CAS  Google Scholar 

  5. Krstić D, Tomić N, Krinulović K et al (2006) The influence of potassium ion (K+) on digoxin-induced inhibition of porcine cerebral cortex Na+/K+-ATPase. J Enzyme Inhib Med Chem 21:471–475

    Article  PubMed  CAS  Google Scholar 

  6. Vasic D, Savic J, Bugarcic Z et al (2009) Interaction of the [PtCl2(DMSO)2] complex with L-cysteine. Z Naturforsch C 64:103–108

    Article  CAS  PubMed  Google Scholar 

  7. Chen D, Song M, Mohamad O et al (2014) Inhibition of Na+/K+-ATPase induces hybrid cell death and enhanced sensitivity to chemotherapy in human glioblastoma cells. BMC Cancer 14:716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Mijatovic T, Ingrassia L, Facchini V et al (2008) Na+/K+-ATPase α subunits as new targets in anticancer therapy. Expert Opin Ther Targets 12:1403–1417

    Article  CAS  PubMed  Google Scholar 

  9. Lefranc F, Kiss R (2008) The sodium pump α1 subunit as a potential target to combat apoptosis-resistant glioblastomas. Neoplasia 10:198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kometiani P, Li J, Gnudi L et al (1998) Multiple signal transduction pathways link Na+/K+-ATPase to growth-related genes in cardiac myocytes: the roles of Ras and mitogen-activated protein kinases. J Biol Chem 273:15249–15256

    Article  CAS  PubMed  Google Scholar 

  11. Xie Z (2003) Molecular mechanisms of Na/K-ATPase-mediated signal transduction. Ann N Y Acad Sci 986:497–503

    Article  CAS  PubMed  Google Scholar 

  12. English LH, Macara IG, Cantley LC (1983) Vanadium stimulates the (Na+, K+) pump in friend erythroleukemia cells and blocks erythropoiesis. J Cell Biol 97:1299–1302

    Article  CAS  PubMed  Google Scholar 

  13. Jorgensen PL, Hakansson KO, Karlish SJD (2003) Structure and mechanism of Na, K-ATPase: functional sites and their interactions. Annu Rev Physiol 65:817–849

    Article  CAS  PubMed  Google Scholar 

  14. Vasilets LA, Schwarz W (1993) Structure-function relationships of cation binding in the Na+/K+-ATPase. Biochim Biophys Acta 1154:201–222

    Article  CAS  PubMed  Google Scholar 

  15. Scheiner-Bobis G (2002) The sodium pump, its molecular properties and mechanisms of ion transport. Eur J Biochem 269:2424–2433

    Article  CAS  PubMed  Google Scholar 

  16. Skou JC, Essman M (1992) The Na, K-ATPase. J Bioenerg Biomembr 24:249–261

    CAS  PubMed  Google Scholar 

  17. Lingrel JB, Kuntzweiler T (1994) Na+, K+-ATPase. J Biol Chem 269:19659–19662

    CAS  PubMed  Google Scholar 

  18. Mercer RW (1993) Structure of the Na+, K+-ATPase. Int Rev Cytol 137:139–168

    Google Scholar 

  19. Pressley TA (1996) Structure and function of the Na+, K+ pump: ten years of molecular biology. Miner Electrolyte Metab 22:264–271

    CAS  PubMed  Google Scholar 

  20. Chow DC, Forte JG (1995) Functional significance of the β subunit for heterodimeric P-type ATPases. J Exp Biol 198:1–17

    CAS  PubMed  Google Scholar 

  21. Lutsenko S, Kaplan JH (1993) An essential role for the extracellular domain of the Na+, K+-ATPase beta-subunit in cation occlusion. Biochemistry 32:6737–6743

    Article  CAS  PubMed  Google Scholar 

  22. Scheiner-Bobis G, Fahlbusch K, Schoner W (1987) Demonstration of cooperating subunits in working (Na++K+)-ATPase by the use of the MgATP complex analogue cobalt tetrammine ATP. J Biochem 168:123–131

    CAS  Google Scholar 

  23. Holmgren M, Wagg J, Bezanilla F et al (2000) Three distinct and sequential steps in the release of sodium ions by the Na+/K+-ATPase. Nature 403:898–901

    Article  CAS  PubMed  Google Scholar 

  24. Kaplan JH (2002) Biochemistry of Na+, K+-ATPase. Annu Rev Biochem 71:511–535

    Article  CAS  PubMed  Google Scholar 

  25. Levenson R (1994) Isoforms of the Na+, K+-ATPase: family members in search of function. Rev Physiol Biochem Pharmacol 123:1–45

    Article  CAS  PubMed  Google Scholar 

  26. Lingrel JB, Orlowsky J, Shull MM et al (1990) Molecular genetics of Na+, K+-ATPase. Prog Nucleic Acid Res Mol Biol 38:37–89

    Article  CAS  PubMed  Google Scholar 

  27. Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol Renal Physiol 275:F633–F650

    CAS  Google Scholar 

  28. Lingrel JB, Williams MT, Vorhees CV et al (2007) Na, K-ATPase and the role of α isoforms in behavior. J Bioenerg Biomembr 39:385–389

    Article  CAS  PubMed  Google Scholar 

  29. Lingrel J, Moseley AMY, Dostanic IVA et al (2003) Functional roles of the α isoforms of the Na, K-ATPase. Ann N Y Acad Sci 986:354–359

    Article  CAS  PubMed  Google Scholar 

  30. Xu Z-W, Wang F-M, Gao M-J et al (2010) Targeting the Na+/K+-ATPase α1 subunit of hepatoma HepG2 cell line to induce apoptosis and cell cycle arresting. Biol Pharm Bull 33:743–751

    Article  CAS  PubMed  Google Scholar 

  31. Prassas I, Diamandis EP (2008) Novel therapeutic applications of cardiac glycosides. Nat Rev Drug Discov 7:926–935

    Article  CAS  PubMed  Google Scholar 

  32. Mijatovic T, Roland I, Van Quaquebeke E et al (2007) The alpha1 subunit of the sodium pump could represent a novel target to combat non-small cell lung cancers. J Pathol 212:170–179

    Article  CAS  PubMed  Google Scholar 

  33. Seligson DB, Rajasekaran SA, Yu H et al (2008) Na, K-adenosine triphosphatase α1-subunit predicts survival of renal clear cell carcinoma. J Urol 179:338–345

    Article  CAS  PubMed  Google Scholar 

  34. Akopyanz NS, Broude NE, Bekman EP et al (1991) Tissue-specific expression of Na, K-ATPase β-subunit. Does β2 expression correlate with tumorigenesis? FEBS Lett 289:8–10

    Article  CAS  PubMed  Google Scholar 

  35. Jung MH, Kim SC, Jeon GA et al (2000) Identification of differentially expressed genes in normal and tumor human gastric tissue. Genomics 69:281–286

    Article  CAS  PubMed  Google Scholar 

  36. Blok LJ, Chang GTG, Steenbeek-Slotboom M et al (1999) Regulation of expression of Na+, K+-ATPase in androgen-dependent and androgen-independent prostate cancer. Br J Cancer 81:28–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Espineda C, Seligson DB, James Ball W et al (2003) Analysis of the Na, K-ATPase α- and β-subunit expression profiles of bladder cancer using tissue microarrays. Cancer 97:1859–1868

    Article  CAS  PubMed  Google Scholar 

  38. Espineda CE, Chang JH, Twiss J et al (2004) Repression of Na, K-ATPase β1-subunit by the transcription factor snail in carcinoma. Mol Biol Cell 15:1364–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rajasekaran SA, Ball WJJ, Bander NH et al (1999) Reduced expression of beta-subunit of NA, K-ATPase in human clear-cell renal cell carcinoma. J Urol 162:574–580

    Article  CAS  PubMed  Google Scholar 

  40. Avila J, Lecuona E, Morales M et al (1997) Opposite expression pattern of the human Na, K-ATPase β1 isoform in stomach and colon adenocarcinomasa. Ann N Y Acad Sci 834:653–655

    Article  CAS  PubMed  Google Scholar 

  41. Sakai H, Suzuki T, Maeda M et al (2004) Up-regulation of Na+, K+-ATPase α3-isoform and down-regulation of the α1-isoform in human colorectal cancer. FEBS Lett 563:151–154

    Article  CAS  PubMed  Google Scholar 

  42. Sadler P (1982) The comparative evaluation of the physical and chemical properties of gold compounds. J Rheumatol Suppl 8:71–78

    CAS  PubMed  Google Scholar 

  43. Milacic V, Dou QP (2009) The tumor proteasome as a novel target for gold(III) complexes: implications for breast cancer therapy. Coord Chem Rev 253:1649–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rosenberg B, Van Camp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699

    Article  CAS  PubMed  Google Scholar 

  45. Williams CJ, Whitehouse JMA (1979) Cisplatinum: a new anti-cancer agent. Br Med J 1:1689–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rosenberg B (1985) Fundamental studies with cisplatin. Cancer 55:2303–2316

    Article  CAS  PubMed  Google Scholar 

  47. Gandara D, Perez E, Phillips WA (1989) Evaluation of cisplatin dose intensity: current status and future prospects. Anticancer Res 9:1121–1128

    CAS  PubMed  Google Scholar 

  48. Vokes E, Athanasiadis I (1996) Chemotherapy for squamous cell carcinoma of head and neck: the future is now. Ann Oncol 7:15–29

    Article  CAS  PubMed  Google Scholar 

  49. Glicksman AS, Slotman G, Doolittle C III et al (1994) Concurrent cis-platinum and radiation with or without surgery for advanced head and neck cancer. Int J Radiat Oncol Biol Phys 30:1043–1050

    Article  CAS  PubMed  Google Scholar 

  50. Daugaard G, Abildgaard U (1989) Cisplatin nephrotoxicity. Cancer Chemother Pharmacol 25:1–9

    Article  CAS  PubMed  Google Scholar 

  51. Hamilton C, Bliss J, Horwich A (1989) The late effects of cis-platinum on renal function. Eur J Cancer Clin Oncol 25:185–189

    Article  CAS  PubMed  Google Scholar 

  52. Lebwohl D, Canetta R (1998) Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur J Cancer 34:1522–1534

    Article  CAS  PubMed  Google Scholar 

  53. Kameyama Y, Okazaki N, Nakagawa M et al (1990) Nephrotoxicity of a new platinum compound, 254-S, evaluated with rat kidney cortical slices. Toxicol Lett 52:15–24

    Article  CAS  PubMed  Google Scholar 

  54. Niioka T, Uno T, Yasui-Furukori N et al (2007) Pharmacokinetics of low-dose nedaplatin and validation of AUC prediction in patients with non-small-cell lung carcinoma. Cancer Chemother Pharmacol 59:575–580

    Article  CAS  PubMed  Google Scholar 

  55. Sasaki Y, Tamura T, Eguchi K et al (1989) Pharmacokinetics of (glycolate-0,0′)-diammine platinum (II), a new platinum derivative, in comparison with cisplatin and carboplatin. Cancer Chemother Pharmacol 23:243–246

    Article  CAS  PubMed  Google Scholar 

  56. Kobayashi H, Takemura Y, Miyachi H et al (1991) Antitumor activities of new platinum compounds, DWA2114R, NK121 and 254-S, against human leukemia cells sensitive or resistant to cisplatin. Invest New Drugs 9:313–319

    Article  CAS  PubMed  Google Scholar 

  57. Shimada M, Itamochi H, Kigawa J (2013) Nedaplatin: a cisplatin derivative in cancer chemotherapy. Cancer Manag Res 5:67–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goldberg RM, Sargent DJ, Morton RF et al (2004) A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol 22:23–30

    Article  CAS  PubMed  Google Scholar 

  59. de Gramont A, Figer A, Seymour M et al (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18:2938–2947

    Article  PubMed  Google Scholar 

  60. Wernyj RP, Morin PJ (2004) Molecular mechanisms of platinum resistance: still searching for the Achilles’ heel. Drug Resist Updat 7:227–232

    Article  CAS  PubMed  Google Scholar 

  61. Grothey A (2003) Oxaliplatin-safety profile: neurotoxicity. Semin Oncol 30:5–13

    Article  CAS  PubMed  Google Scholar 

  62. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279

    Article  CAS  PubMed  Google Scholar 

  63. Koga H, Kotoh S, Nakashima M et al (2000) Accumulation of intracellular platinum is correlated with intrinsic cisplatin resistance in human bladder cancer cell lines. Int J Oncol 16:1003–1007

    CAS  PubMed  Google Scholar 

  64. Hector S, Bolanowska-Higdon W, Zdanowicz J et al (2001) In vitro studies on the mechanisms of oxaliplatin resistance. Cancer Chemother Pharmacol 48:398–406

    Article  CAS  PubMed  Google Scholar 

  65. Shen DW, Goldenberg S, Pastan I et al (2000) Decreased accumulation of [14C]carboplatin in human cisplatin resistant cells results from reduced energy-dependent uptake. J Cell Physiol 183:108–116

    Article  CAS  PubMed  Google Scholar 

  66. Holford J, Beale PJ, Boxall FE et al (2000) Mechanisms of drug resistance to the platinum complex ZD0473 in ovarian cancer cell lines. Eur J Cancer 36:1984–1990

    Article  CAS  PubMed  Google Scholar 

  67. Stewart DJ, Mikhael NZ, Nair RC et al (1988) Platinum concentrations in human autopsy tumor samples. Am J Clin Oncol 11:152–158

    Article  CAS  PubMed  Google Scholar 

  68. Raynaud FI, Boxall FE, Goddard PM et al (1997) cis-Amminedichloro(2-methylpyridine) platinum(II) (AMD473), a novel sterically hindered platinum complex: in vivo activity, toxicology, and pharmacokinetics in mice. Clin Cancer Res 3:2063–2074

    CAS  PubMed  Google Scholar 

  69. Beale PJ, Judson I, O’Donnell A et al (2003) A phase I clinical and pharmacological study of cis-diamminedichloro(2-methylpyridine) platinum II (AMD473). Br J Cancer 88:1128–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stathopoulos GP (2010) Liposomal cisplatin: a new cisplatin formulation. Anticancer Drugs 21:732–736

    Article  CAS  PubMed  Google Scholar 

  71. Stathopoulos GP, Antoniou D, Dimitroulis J et al (2011) Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer. Cancer Chemother Pharmacol 68:945–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Monneret C (2011) Platinum anticancer drugs. From serendipity to rational design. Ann Pharm Fr 69:286–295

    Article  CAS  PubMed  Google Scholar 

  73. Nowotnik DP, Cvitkovic E (2009) ProLindac™ (AP5346): a review of the development of an HPMA DACH platinum polymer therapeutic. Adv Drug Deliv Rev 61:1214–1219

    Article  CAS  PubMed  Google Scholar 

  74. Neault J, Benkirane A, Malonga H et al (2001) Interaction of cisplatin drug with Na, K-ATPase: drug binding mode and protein secondary structure. J Inorg Biochem 86:603–609

    Article  CAS  PubMed  Google Scholar 

  75. Hall MD, Okabe M, Shen DW et al (2008) The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol 48:495–535

    Article  CAS  PubMed  Google Scholar 

  76. Gately DP, Howell SB (1993) Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer 67:1171–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Andrews PA, Mann SC, Huynh HH et al (1991) Role of the Na+, K+-adenosine triphosphatase in the accumulation of cis-diamminedichloroplatinum(II) in human ovarian carcinoma cells. Cancer Res 51:3677–3681

    CAS  PubMed  Google Scholar 

  78. Hannon MJ (2007) Metal-based anticancer drugs: from a past anchored in platinum chemistry to a post-genomic future of diverse chemistry and biology. Pure Appl Chem 79:2243–2261

    Article  CAS  Google Scholar 

  79. Kostova I (2006) Platinum complexes as anticancer agents. Recent Pat Anticancer Drug Discov 1:1–22

    Article  CAS  PubMed  Google Scholar 

  80. Raymond E, Faivre S, Chaney S et al (2002) Cellular and molecular pharmacology of oxaliplatin. Mol Cancer Ther 1:227–235

    CAS  PubMed  Google Scholar 

  81. Chu G (1994) Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem 269:787–790

    CAS  PubMed  Google Scholar 

  82. Wing RM, Pjura P, Drew HR et al (1984) The primary mode of binding of cisplatin to a B-DNA dodecamer: CGCGAATTCGCG. EMBO J 3:1201–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Katano K, Kondo A, Safaei R et al (2002) Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer Res 62:6559–6565

    CAS  PubMed  Google Scholar 

  84. Kitada H, Suzuki K, Yamaoka M et al (2005) The effects of platinum-containing anti-cancer drugs on Na+, K+-ATPase activity in pig kidney and human renal proximal tubule epithelial cells. J Oral Therapeut Pharmacol 24:20–29

    CAS  Google Scholar 

  85. Adams M, Kerby IJ, Rocker I et al (1989) A comparison of the toxicity and efficacy of cisplatin and carboplatin in advanced ovarian cancer. Acta Oncol 28:57–60

    Article  CAS  PubMed  Google Scholar 

  86. Inuyama Y, Hirosato M, Horiuchi M et al (1992) A late phase II clinical study of cisdiammine grycolato platinum, 254-S, for head and neck cancers. Jpn J Cancer Chemother 19:871–877

    CAS  Google Scholar 

  87. Lippard SJ (1982) New chemistry of an old molecule: cis-[Pt(NH3)2Cl2]. Science 218:1075–1082

    Article  CAS  PubMed  Google Scholar 

  88. Sakakibara N, Suzuki K, Kaneta H et al (1999) Inhibition of Na+, K+-ATPase by cisplatin and its recovery by 2-mercaptoethanol in human squamous cell carcinoma cells. Anticancer Drugs 10:203–212

    Article  CAS  PubMed  Google Scholar 

  89. Uozumi J, Litterst CL (1985) The effect of cisplatin on renal ATPase activity in vivo and in vitro. Cancer Chemother Pharmacol 15:93–96

    Article  CAS  PubMed  Google Scholar 

  90. Ravera M, Bagni M, Mascini M et al (2007) The activation of platinum (II) antiproliferative drugs in carbonate medium evaluated by means of a DNA biosensor. J Inorg Biochem 101:1023–1027

    Article  CAS  PubMed  Google Scholar 

  91. Jones MM, Basinger MA, Holscher MA (1991) Relative effectiveness of some compounds for the control of cisplatin-induced nephrotoxicity. Toxicology 68:227–247

    Article  CAS  PubMed  Google Scholar 

  92. Naganuma A, Satoh M, Imura N (1987) Prevention of lethal and renal toxicity of cisdiamminedichloroplatinum (II) by induction of metallothionein synthesis without compromising its antitumor activity in mice. Cancer Res 47:983–987

    CAS  PubMed  Google Scholar 

  93. Milacic V, Fregona D, Dou QP (2008) Gold complexes as prospective metal-based anticancer drugs. Histol Histopathol 23:101–108

    CAS  PubMed  Google Scholar 

  94. Ott I (2009) On the medicinal chemistry of gold complexes as anticancer drugs. Coord Chem Rev 253:1670–1681

    Article  CAS  Google Scholar 

  95. Messori L, Marcon G, Orioli P (2003) Gold(III) compounds as new family of anticancer drugs. Bioinorg Chem Appl 177–187

    Google Scholar 

  96. Kostova I (2006) Gold coordination complexes as anticancer agents. Anticancer Agent Med Chem 6:19–32

    Article  CAS  Google Scholar 

  97. Gabbiani C, Casini A, Messori L (2007) Gold(III) compounds as anticancer drugs. Gold Bull 40:73–81

    Article  CAS  Google Scholar 

  98. Kelland LR (2000) Preclinical perspectives on platinum resistance. Drugs 59:1–8

    Article  CAS  PubMed  Google Scholar 

  99. Messori L, Abbate F, Marcon G et al (2000) Gold(III) complexes as potential antitumor agents: solution chemistry and cytotoxic properties of some selected gold(III) compounds. J Med Chem 43:3541–3548

    Article  CAS  PubMed  Google Scholar 

  100. McKeage MJ, Maharaj L, Berners-Price SJ (2002) Mechanisms of cytotoxicity and antitumor activity of gold(I) phosphine complexes: the possible role of mitochondria. Coord Chem Rev 232:127–135

    Article  CAS  Google Scholar 

  101. Casini A, Hartinger C, Gabbiani C et al (2008) Gold(III) compounds as anticancer agents: relevance of gold–protein interactions for their mechanism of action. J Inorg Biochem 102:564–575

    Article  CAS  PubMed  Google Scholar 

  102. Maia P, Deflon V, Abram U (2014) Gold(III) complexes in medicinal chemistry. Future Med Chem 6:1515–1536

    Article  CAS  PubMed  Google Scholar 

  103. Marcon G, Messori L, Orioli P (2002) Gold(III) complexes as a new family of cytotoxic and antitumor agents. Expert Rev Anticancer Ther 2:337–346

    Article  CAS  PubMed  Google Scholar 

  104. Ronconi L, Marzano C, Zanello P et al (2006) Gold(III) dithiocarbamate derivatives for the treatment of cancer: solution chemistry, DNA binding, and hemolytic properties. J Med Chem 49:1648–1657

    Article  CAS  PubMed  Google Scholar 

  105. Petrović V, Vodnik V, Stanojević I et al (2012) Interaction of gold nanoparticles with rat brain synaptosomal plasma membrane Na+/K+-ATPase AND Mg2+-ATPase. Dig J Nanomater Biostruct 7:423–433

    Google Scholar 

  106. Ronconi L, Giovagnini L, Marzano C et al (2005) Gold dithiocarbamate derivatives as potential antineoplastic agents: design, spectroscopic properties, and in vitro antitumor activity. Inorg Chem 44:1867–1881

    Article  CAS  PubMed  Google Scholar 

  107. Casini A, Diawara MC, Scopelliti R et al (2010) Synthesis, characterisation and biological properties of gold(III) compounds with modified bipyridine and bipyridylamine ligands. Dalton Trans 39:2239–2245

    Article  CAS  PubMed  Google Scholar 

  108. Abbate F, Orioli P, Bruni B et al (2000) Crystal structure and solution chemistry of the cytotoxic complex 1,2-dichloro(o-phenanthroline)gold(III) chloride. Inorg Chim Acta 311:1–5

    Article  CAS  Google Scholar 

  109. Witkiewicz PL, Shaw CF (1981) Oxidative cleavage of peptide and protein disulphide bonds by gold(III): a mechanism for gold toxicity. J Chem Soc Chem Commun 21:1111–1114

    Article  Google Scholar 

  110. Shaw CF, Cancro MP, Witkiewicz PL et al (1980) Gold(III) oxidation of disulfides in aqueous solution. Inorg Chem 19:3198–3201

    Article  CAS  Google Scholar 

  111. Bordignon E, Cattalini L, Natile G et al (1973) Stereospecific oxidation of methionine to methionine sulphoxide by tetrachloroauric(III) acid. J Chem Soc Chem Commun 878–879

    Google Scholar 

  112. Natile G, Bordignon E, Cattalini L (1976) Chloroauric acid as oxidant. Stereospecific oxidation of methionine to methionine sulfoxide. Inorg Chem 15:246–248

    Article  CAS  Google Scholar 

  113. Isab AA, Sadler PJ (1977) Reactions of gold(III) ions with ribonuclease A and methionine derivatives in aqueous solution. Biochim Biophys Acta 492:322–330

    Article  CAS  PubMed  Google Scholar 

  114. Zou J, Guo Z, Parkinson JA et al (1999) Gold(III)-induced oxidation of glycine. Chem Commun 1359–1360

    Google Scholar 

  115. Petrović V, Čolović M, Krstić D et al (2013) In vitro effects of some gold complexes on Na+/K+ ATPase activity and cell proliferation. J Inorg Biochem 124:35–41

    Article  PubMed  CAS  Google Scholar 

  116. Petrović V, Petrović S, Joksić G et al (2014) Inhibition of Na+/K+-ATPase and cytotoxicity of a few selected gold(III) complexes. J Inorg Biochem 140:228–235

    Article  PubMed  CAS  Google Scholar 

  117. Bugarcic Z, Jancic D, Shoukry A et al (2004) Rate and equilibrium data for substitution reactions of [Pt(dien)Cl]+ with L-Cysteine and glutathione in aqueous solution. Monatsh Chem 135:151–160

    Article  CAS  Google Scholar 

  118. Vujacic A, Savic J, Sovilj S et al (2009) Mechanism of complex formation between [AuCl4]- and L-methionine. Polyhedron 28:593–599

    Article  CAS  Google Scholar 

  119. Krinulović KS, Vasić VM (2006) Interaction of some Pd(II) complexes with Na+/K+-ATPase: inhibition, kinetics, prevention and recovery. J Enzyme Inhib Med Chem 21:459–465

    Article  PubMed  CAS  Google Scholar 

  120. Shi HG, Mikhaylova L, Zichittella AE et al (2000) Functional role of cysteine residues in the (Na, K)-ATPase α subunit. Biochim Biophys Acta 1464:177–187

    Article  CAS  PubMed  Google Scholar 

  121. Romero-Canelón I, Pizarro AM, Habtemariam A et al (2012) Contrasting cellular uptake pathways for chlorido and iodido iminopyridine ruthenium arene anticancer complexes. Metallomics 4:1271–1279

    Article  PubMed  CAS  Google Scholar 

  122. Hartinger CG, Phillips AD, Nazarov AA (2011) Polynuclear ruthenium, osmium and gold complexes. The quest for innovative anticancer chemotherapeutics. Curr Top Med Chem 11:2688–2702

    Article  CAS  PubMed  Google Scholar 

  123. Heffeter P, Pongratz M, Steiner E et al (2005) Intrinsic and acquired forms of resistance against the anticancer ruthenium compound KP1019 [Indazolium trans-[tetrachlorobis(1H-indazole)ruthenate (III)] (FFC14A). J Pharmacol Exp Ther 312:281–289

    Article  CAS  PubMed  Google Scholar 

  124. Jakupec MA, Galanski M, Arion VB et al (2008) Antitumour metal compounds: more than theme and variations. Dalton Trans 183–194

    Google Scholar 

  125. Galanski M, Arion VB, Jakupec MA et al (2003) Recent developments in the field of tumor-inhibiting metal complexes. Curr Pharm Des 9:2078–2089

    Article  CAS  PubMed  Google Scholar 

  126. Kapitza S, Pongratz M, Jakupec MA et al (2005) Heterocyclic complexes of ruthenium(III) induce apoptosis in colorectal carcinoma cells. J Cancer Res Clin Oncol 131:101–110

    Article  CAS  PubMed  Google Scholar 

  127. Kapitza S, Jakupec MA, Uhl M et al (2005) The heterocyclic ruthenium(III) complex KP1019 (FFC14A) causes DNA damage and oxidative stress in colorectal tumor cells. Cancer Lett 226:115–121

    Article  CAS  PubMed  Google Scholar 

  128. Hartinger CG, Jakupec MA, Zorbas-Seifried S et al (2008) KP1019, a new redox-active anticancer agent—preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers 5:2140–2155

    Article  CAS  PubMed  Google Scholar 

  129. Berger MR, Garzon FT, Keppler BK et al (1989) Efficacy of new ruthenium complexes against chemically induced autochthonous colorectal carcinoma in rats. Anticancer Res 9:761–765

    CAS  PubMed  Google Scholar 

  130. Sava G, Bergamo A (2000) Ruthenium-based compounds and tumour growth control (review). Int J Oncol 17:353–365

    CAS  PubMed  Google Scholar 

  131. Bergamo A, Gaiddon C, Schellens JHM et al (2012) Approaching tumour therapy beyond platinum drugs: status of the art and perspectives of ruthenium drug candidates. J Inorg Biochem 106:90–99

    Article  CAS  PubMed  Google Scholar 

  132. Wang F, Habtemariam A, van der Geer EPL et al (2005) Controlling ligand substitution reactions of organometallic complexes: tuning cancer cell cytotoxicity. Proc Natl Acad Sci U S A 102:18269–18274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Peacock AFA, Habtemariam A, Fernández R et al (2006) Tuning the reactivity of osmium(II) and ruthenium(II) arene complexes under physiological conditions. J Am Chem Soc 128:1739–1748

    Article  CAS  PubMed  Google Scholar 

  134. Yan YK, Melchart M, Habtemariam A et al (2005) Organometallic chemistry, biology and medicine: ruthenium arene anticancer complexes. Chem Commun 4764–4776

    Google Scholar 

  135. Suss-Fink G (2010) Arene ruthenium complexes as anticancer agents. Dalton Trans 39:1673–1688

    Article  PubMed  Google Scholar 

  136. Romero-Canelón I, Salassa L, Sadler PJ (2013) The contrasting activity of iodido versus chlorido ruthenium and osmium arene azo- and imino-pyridine anticancer complexes: control of cell selectivity, cross-resistance, p53 dependence, and apoptosis pathway. J Med Chem 56:1291–1300

    Article  PubMed  CAS  Google Scholar 

  137. Teis D, Huber LA (2003) The odd couple: signal transduction and endocytosis. Cell Mol Life Sci 60:2020–2033

    Article  CAS  PubMed  Google Scholar 

  138. Crans DC, Smee JJ, Gaidamauskas E et al (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104:849–902

    Article  CAS  PubMed  Google Scholar 

  139. Bevan AP, Drake P, Yale J-F et al (1995) Peroxovanadium compounds: biological actions and mechanism of insulin-mimesis. Mol Cell Biochem 153:49–58

    Article  CAS  PubMed  Google Scholar 

  140. Huyer G, Liu S, Kelly J et al (1997) Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272:843–851

    Article  CAS  PubMed  Google Scholar 

  141. Zhang M, Zhou M, Van Etten RL et al (1997) Crystal structure of bovine low molecular weight phosphotyrosyl phosphatase complexed with the transition state analog vanadate. Biochemistry 36:15–23

    Article  CAS  PubMed  Google Scholar 

  142. Aureliano M (2000) Vanadate oligomer inhibition of passive and active Ca2+ translocation by the Ca2+ pump of sarcoplasmic reticulum. J Inorg Biochem 80:145–147

    Article  CAS  PubMed  Google Scholar 

  143. Beaugé L (1988) Inhibition of translocation reactions by vanadate. In: Sidney Fleischer BF (ed) Methods in enzymology, vol 156. Academic, New York, pp 251–267

    Google Scholar 

  144. Sauna ZE, Smith MM, Müller M et al (2001) Functionally similar vanadate-induced 8-azidoadenosine 5′-[α-32P]diphosphate-trapped transition state intermediates of human P-glycoprotein are generated in the absence and presence of ATP hydrolysis. J Biol Chem 276:21199–21208

    Article  CAS  PubMed  Google Scholar 

  145. Djordjevic C, Wampler GL (1985) Antitumor activity and toxicity of peroxo heteroligand vanadates(V) in relation to biochemistry of vanadium. J Inorg Biochem 25:51–55

    Article  CAS  PubMed  Google Scholar 

  146. Chakraborty T, Ghosh S, Datt S et al (2003) Vanadium suppress sister-chromatid exchange and DNA-protein cross-link formation and restores antioxidant status hepatocellular architecture during 2-acetylaminfluorene-induced experimental rat hepatocarcinogenesis. J Exp Ther Oncol 3:346–362

    Article  CAS  PubMed  Google Scholar 

  147. Molinuevo M, Barrio D, Cortizo A et al (2004) Antitumoral properties of two new vanadyl(IV) complexes in osteoblasts in culture: role of apoptosis and oxidative stress. Cancer Chemother Pharmacol 53:163–172

    Article  CAS  PubMed  Google Scholar 

  148. Kanna PS, Mahendrakumar CB, Indira BN et al (2004) Chemopreventive effects of vanadium toward 1,2-dimethylhydrazine-induced genotoxicity and preneoplastic lesions in rat colon. Environ Mol Mutagen 44:113–118

    Article  CAS  PubMed  Google Scholar 

  149. Zhai F, Wang X, Li D et al (2009) Synthesis and biological evaluation of decavanadate Na4Co(H2O)6V10O28·18H2O. Biomed Pharmacother 63:51–55

    Article  CAS  PubMed  Google Scholar 

  150. Li Y-T, Zhu C-Y, Wu Z-Y et al (2010) Synthesis, crystal structures and anticancer activities of two decavanadate compounds. Transit Met Chem 35:597–603

    Article  CAS  Google Scholar 

  151. Cantley L, Josephson L, Warner R et al (1977) Vanadate is a potent (Na, K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem 252:7421–7423

    CAS  PubMed  Google Scholar 

  152. Cantley LC, Cantley LG, Josephson L (1978) A characterization of vanadate interactions with the (Na, K)-ATPase. Mechanistic and regulatory implications. J Biol Chem 253:7361–7368

    CAS  PubMed  Google Scholar 

  153. Karlish SJD, Beauge LA, Glynn IM (1979) Vanadate inhibits (Na+ + K+)ATPase by blocking a conformational change of the unphosphorylated form. Nature 282:333–335

    Article  CAS  PubMed  Google Scholar 

  154. Macara IG, Kustin K, Cantley LC Jr (1980) Glutathione reduces cytoplasmic vanadate mechanism and physiological implications. Biochim Biophys Acta 629:95–106

    Article  CAS  PubMed  Google Scholar 

  155. Cantley LC, Aisen P (1979) The fate of cytoplasmic vanadium. Implications on (NA, K)-ATPase inhibition. J Biol Chem 254:1781–1784

    CAS  PubMed  Google Scholar 

  156. North P, Post RL (1984) Inhibition of (Na, K)-ATPase by tetravalent vanadium. J Biol Chem 259:4971–4978

    CAS  PubMed  Google Scholar 

  157. Aureliano M, Gândara R (2005) Decavanadate effects in biological systems. J Inorg Biochem 99:979–985

    Article  CAS  PubMed  Google Scholar 

  158. Pezza RJ, Villarreal MA, Montich GG et al (2002) Vanadate inhibits the ATPase activity and DNA binding capability of bacterial MutS. A structural model for the vanadate-MutS interaction at the Walker A motif. Nucleic Acids Res 30:4700–4708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Krstić D, Čolović M, Bošnjaković-Pavlović N et al (2009) Influence of decavanadate on rat synaptic plasma membrane ATPases activity. Gen Physiol Biophys 28:302–306

    Article  PubMed  CAS  Google Scholar 

  160. Abu-Surrah A, Al-Allaf T, Rashan L et al (2002) Synthesis, crystal structure and initial biological evaluation of the new enantiomerically pure chiral palladium(II) complex trans-bis{endo-(1R)-1,7,7-trimethylbicyclo[2.2.1]-heptan-2-amino}palladium(II)dichloride. Eur J Med Chem 37:919–922

    Article  CAS  PubMed  Google Scholar 

  161. Abu-Surrah AS, Al-Sadoni HH, Abdalla MY (2008) Palladium-based chemotherapeutic agents: routes toward complexes with good antitumor activity. Cancer Ther 6:1–10

    CAS  Google Scholar 

  162. Ulukaya E, Ari F, Dimas K et al (2011) Anti-cancer activity of a novel palladium(II) complex on human breast cancer cells in vitro and in vivo. Eur J Med Chem 46:4957–4963

    Article  CAS  PubMed  Google Scholar 

  163. Pucci D, Bloise R, Bellusci A et al (2007) Curcumin and cyclopalladated complexes: a recipe for bifunctional biomaterials. J Inorg Biochem 101:1013–1022

    Article  CAS  PubMed  Google Scholar 

  164. Peláez MA, Ramírez T, Martínez M et al (2004) Synthesis, crystal structures and anticancer activity of the new chiral mono- and dinuclear palladium(II) complexes derived from (S)-(−)-(1-phenylethylimino)benzylphenylketone. Z Anorg Allg Chem 630:1489–1494

    Article  CAS  Google Scholar 

  165. Trávníček Z, Szűčová L, Popa I (2007) Synthesis, characterization and assessment of the cytotoxic properties of cis and trans-[Pd(L)2Cl2] complexes involving 6-benzylamino-9-isopropylpurine derivatives. J Inorg Biochem 101:477–492

    Article  PubMed  CAS  Google Scholar 

  166. Ray S, Mohan R, Singh JK et al (2007) Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes. J Am Chem Soc 129:15042–15053

    Article  CAS  PubMed  Google Scholar 

  167. Kapdi AR, Fairlamb IJS (2014) Anti-cancer palladium complexes: a focus on PdX2L2, palladacycles and related complexes. Chem Soc Rev 43:4751–4777

    Article  CAS  PubMed  Google Scholar 

  168. Bugarcic ZD, Liehr G, van Eldik R (2002) Kinetics and mechanism of the reaction of chelated Pd(II) complexes with thiols in acidic aqueous solution. Synthesis and crystal structure of [Pd(bpma)Cl]Cl[middle dot]H2O (bpma = bis(2-pyridylmethyl)amine). J Chem Soc Dalton Trans 6:951–956

    Article  CAS  Google Scholar 

  169. Vasic V, Cakar M, Savic J et al (2003) Influence of sodium dodecyl sulfate on the kinetics of complex formation between [PdCl(dien)] + and sulfur containing ligands—cysteine and glutathione. Polyhedron 22:279–285

    Article  CAS  Google Scholar 

  170. Carfagna M, Ponsler G, Muhoberac B (1996) Inhibition of ATPase activity in rat synaptic plasma membranes by simultaneous exposure to metals. Chem Biol Interact 100:53–65

    Article  CAS  PubMed  Google Scholar 

  171. Vujisić L, Krstić D, Krinulović K et al (2004) The influence of transition and heavy metal ions on ATP-ases activity in rat synaptic plasma membranes. J Serb Chem Soc 69:541–547

    Article  Google Scholar 

  172. Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 2012:1–26

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, project No. 172023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna M. Vasić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Momić, T.G., Čolović, M.B., Lazarević-Pašti, T.D., Vasić, V.M. (2016). Metal Based Compounds, Modulators of Na, K-ATPase with Anticancer Activity. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_24

Download citation

Publish with us

Policies and ethics