Skip to main content

Advances in the Understanding of Renal Proximal Tubular Na+/K+ ATPase Regulation by Parathyroid Hormone and Dopamine

  • Chapter
  • First Online:
Regulation of Membrane Na+-K+ ATPase

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 15))

  • 1087 Accesses

Abstract

Na+/K+ ATPase activity is highly regulated in the renal proximal tubules by several hormones including PTH and dopamine. Both parathyroid hormone (PTH) and dopamine decrease Na+/K+ ATPase activity and expression by similar yet distinct signaling mechanisms. The role of PTH in regulation of Na+/K+ ATPase in renal proximal tubules is not very well studied. In contrast, dopamine regulation of Na+/K+ ATPase is extensively studied. This chapter focuses on the differential regulation of Na+/K+ ATPase by PTH and dopamine in renal proximal tubule cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Article  CAS  PubMed  Google Scholar 

  2. Martin DW (2005) Structure-function relationships in the NA+, K + -pump. Semin Nephrol 25:282–291

    Article  CAS  PubMed  Google Scholar 

  3. Lane LK, Shull MM, Whitmer KR, Lingrel JB (1989) Characterization of two genes for the human Na, K-ATPase beta subunit. Genomics 5:445–453

    Article  CAS  PubMed  Google Scholar 

  4. Shull GE, Greeb J, Lingrel JB (1986) Molecular cloning of three distinct forms of the Na+, K + -ATPase alpha-subunit from rat brain. Biochemistry 25:8125–8132

    Article  CAS  PubMed  Google Scholar 

  5. Arystarkhova E, Donnet C, Munoz-Matta A et al (2007) Multiplicity of expression of FXYD proteins in mammalian cells: dynamic exchange of phospholemman and gamma-subunit in response to stress. Am J Physiol Cell Physiol 292:C1179–C1191

    Article  CAS  PubMed  Google Scholar 

  6. Blanco G (2005) Na, K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin Nephrol 25:292–303

    Article  CAS  PubMed  Google Scholar 

  7. Sweadner KJ, Rael E (2000) The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics 68:41–56

    Article  CAS  PubMed  Google Scholar 

  8. Forbush B 3rd, Kaplan JH, Hoffman JF (1978) Characterization of a new photoaffinity derivative of ouabain: labeling of the large polypeptide and of a proteolipid component of the Na, K-ATPase. Biochemistry 17:3667–3676

    Article  CAS  PubMed  Google Scholar 

  9. Ackermann U, Geering K (1990) Mutual dependence of Na, K-ATPase alpha- and beta-subunits for correct posttranslational processing and intracellular transport. FEBS Lett 269:105–108

    Article  CAS  PubMed  Google Scholar 

  10. Lingrel JB, Kuntzweiler T (1994) Na+, K(+)-ATPase. J Biol Chem 269:19659–19662

    CAS  PubMed  Google Scholar 

  11. Bystriansky JS, Kaplan JH (2007) Sodium pump localization in epithelia. J Bioenerg Biomembr 39:373–378

    Article  CAS  PubMed  Google Scholar 

  12. Ribeiro CP, Mandel LJ (1992) Parathyroid hormone inhibits proximal tubule Na(+)-K(+)-ATPase activity. Am J Physiol 262:F209–F216

    CAS  PubMed  Google Scholar 

  13. Derrickson BH, Mandel LJ (1997) Parathyroid hormone inhibits Na(+)-K(+)-ATPase through Gq/G11 and the calcium-independent phospholipase A2. Am J Physiol 272:F781–F788

    CAS  PubMed  Google Scholar 

  14. Ribeiro CM, Dubay GR, Falck JR, Mandel LJ (1994) Parathyroid hormone inhibits Na(+)-K(+)-ATPase through a cytochrome P-450 pathway. Am J Physiol 266:F497–F505

    CAS  PubMed  Google Scholar 

  15. Zhang Y, Norian JM, Magyar CE et al (1999) In vivo PTH provokes apical NHE3 and NaPi2 redistribution and Na-K-ATPase inhibition. Am J Physiol 276:F711–F719

    CAS  PubMed  Google Scholar 

  16. Khundmiri SJ, Lederer E (2002) PTH and DA regulate Na-K ATPase through divergent pathways. Am J Physiol Renal Physiol 282:F512–F522

    Article  CAS  PubMed  Google Scholar 

  17. Khundmiri SJ, Bertorello AM, Delamere NA, Lederer ED (2004) Clathrin-mediated endocytosis of Na+, K + -ATPase in response to parathyroid hormone requires ERK-dependent phosphorylation of Ser-11 within the alpha1-subunit. J Biol Chem 279:17418–17427

    Article  CAS  PubMed  Google Scholar 

  18. Khundmiri SJ, Dean WL, McLeish KR, Lederer ED (2005) Parathyroid hormone-mediated regulation of Na + -K + -ATPase requires ERK-dependent translocation of protein kinase Calpha. J Biol Chem 280:8705–8713

    Article  CAS  PubMed  Google Scholar 

  19. Khundmiri SJ, Ameen M, Delamere NA, Lederer ED (2008) PTH-mediated regulation of Na + -K + -ATPase requires Src kinase-dependent ERK phosphorylation. Am J Physiol Renal Physiol 295:F426–F437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weinman EJ, Steplock D, Zhang X et al (1999) Molecular cloning of the cDNA and promoter sequences for the mouse sodium-hydrogen exchanger regulatory factor. Biochim Biophys Acta 1447:71–76

    Article  CAS  PubMed  Google Scholar 

  21. Shenolikar S, Weinman EJ (2001) NHERF: targeting and trafficking membrane proteins. Am J Physiol Renal Physiol 280:F389–F395

    CAS  PubMed  Google Scholar 

  22. Lederer ED, Khundmiri SJ, Weinman EJ (2003) Role of NHERF-1 in regulation of the activity of Na-K ATPase and sodium-phosphate co-transport in epithelial cells. J Am Soc Nephrol 14:1711–1719

    Article  CAS  PubMed  Google Scholar 

  23. Mahon MJ, Segre GV (2004) Stimulation by parathyroid hormone of a NHERF-1-assembled complex consisting of the parathyroid hormone I receptor, phospholipase Cbeta, and actin increases intracellular calcium in opossum kidney cells. J Biol Chem 279:23550–23558

    Article  CAS  PubMed  Google Scholar 

  24. Khundmiri SJ, Weinman EJ, Steplock D et al (2005) Parathyroid hormone regulation of NA+, K + -ATPase requires the PDZ 1 domain of sodium hydrogen exchanger regulatory factor-1 in opossum kidney cells. J Am Soc Nephrol 16:2598–2607

    Article  CAS  PubMed  Google Scholar 

  25. Felder RA, Robillard J, Eisner GM, Jose PA (1989) Role of endogenous dopamine on renal sodium excretion. Semin Nephrol 9:91–93

    CAS  PubMed  Google Scholar 

  26. Jose PA, Eisner GM, Felder RA (2002) Role of dopamine receptors in the kidney in the regulation of blood pressure. Curr Opin Nephrol Hypertens 11:87–92

    Article  PubMed  Google Scholar 

  27. Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA (2005) Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev 85:679–715

    Article  CAS  PubMed  Google Scholar 

  28. Felder RA, Felder CC, Eisner GM, Jose PA (1989) The dopamine receptor in adult and maturing kidney. Am J Physiol 257:F315–F327

    CAS  PubMed  Google Scholar 

  29. Hussain T, Lokhandwala MF (1998) Renal dopamine receptor function in hypertension. Hypertension 32:187–197

    Article  CAS  PubMed  Google Scholar 

  30. Pinho MJ, Serrao MP, Gomes P et al (2004) Over-expression of renal LAT1 and LAT2 and enhanced L-DOPA uptake in SHR immortalized renal proximal tubular cells. Kidney Int 66:216–226

    Article  CAS  PubMed  Google Scholar 

  31. Beheray SA, Hussain T, Lokhandwala MF (2000) Dopamine inhibits na, h-exchanger via D1-like receptor-mediated stimulation of protein kinase a in renal proximal tubules. Clin Exp Hypertens 22:635–644

    Article  CAS  PubMed  Google Scholar 

  32. Beheray S, Kansra V, Hussain T, Lokhandwala MF (2000) Diminished natriuretic response to dopamine in old rats is due to an impaired D1-like receptor-signaling pathway. Kidney Int 58:712–720

    Article  CAS  PubMed  Google Scholar 

  33. Bertorello A, Aperia A (1990) Short-term regulation of Na+, K(+)-ATPase activity by dopamine. Am J Hypertens 3:51s–54s

    Article  CAS  PubMed  Google Scholar 

  34. Aperia A, Bertorello A, Seri I (1987) Dopamine causes inhibition of Na + -K + -ATPase activity in rat proximal convoluted tubule segments. Am J Physiol 252:F39–F45

    CAS  PubMed  Google Scholar 

  35. Efendiev R, Bertorello AM, Pedemonte CH (1999) PKC-beta and PKC-zeta mediate opposing effects on proximal tubule Na+, K + -ATPase activity. FEBS Lett 456:45–48

    Article  CAS  PubMed  Google Scholar 

  36. Chibalin AV, Pedemonte CH, Katz AI et al (1998) Phosphorylation of the catalytic alpha-subunit constitutes a triggering signal for Na+, K + -ATPase endocytosis. J Biol Chem 273:8814–8819

    Article  CAS  PubMed  Google Scholar 

  37. Chibalin AV, Ogimoto G, Pedemonte CH et al (1999) Dopamine-induced endocytosis of Na+, K + -ATPase is initiated by phosphorylation of Ser-18 in the rat alpha subunit and Is responsible for the decreased activity in epithelial cells. J Biol Chem 274:1920–1927

    Article  CAS  PubMed  Google Scholar 

  38. Efendiev R, Krmar RT, Ogimoto G et al (2004) Hypertension-linked mutation in the adducin alpha-subunit leads to higher AP2-mu2 phosphorylation and impaired Na+, K + -ATPase trafficking in response to GPCR signals and intracellular sodium. Circ Res 95:1100–1108

    Article  CAS  PubMed  Google Scholar 

  39. Chen Z, Krmar RT, Dada L et al (2006) Phosphorylation of adaptor protein-2 mu2 is essential for Na+, K + -ATPase endocytosis in response to either G protein-coupled receptor or reactive oxygen species. Am J Respir Cell Mol Biol 35:127–132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Efendiev R, Bertorello AM, Zandomeni R et al (2002) Agonist-dependent regulation of renal Na+, K + -ATPase activity is modulated by intracellular sodium concentration. J Biol Chem 277:11489–11496

    Article  CAS  PubMed  Google Scholar 

  41. Efendiev R, Chen Z, Krmar RT et al (2005) The 14–3-3 protein translates the NA+, K + -ATPase {alpha}1-subunit phosphorylation signal into binding and activation of phosphoinositide 3-kinase during endocytosis. J Biol Chem 280:16272–16277

    Article  CAS  PubMed  Google Scholar 

  42. Efendiev R, Yudowski GA, Zwiller J et al (2002) Relevance of dopamine signals anchoring dynamin-2 to the plasma membrane during Na+, K + -ATPase endocytosis. J Biol Chem 277:44108–44114

    Article  CAS  PubMed  Google Scholar 

  43. Efendiev R, Cinelli AR, Leibiger IB et al (2006) FRET analysis reveals a critical conformational change within the Na, K-ATPase alpha1 subunit N-terminus during GPCR-dependent endocytosis. FEBS Lett 580:5067–5070

    Article  CAS  PubMed  Google Scholar 

  44. Budu CE, Efendiev R, Cinelli AM et al (2002) Hormonal-dependent recruitment of Na+, K + -ATPase to the plasmalemma is mediated by PKC beta and modulated by [Na+]i. Br J Pharmacol 137:1380–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cinelli AR, Efendiev R, Pedemonte CH (2008) Trafficking of Na-K-ATPase and dopamine receptor molecules induced by changes in intracellular sodium concentration of renal epithelial cells. Am J Physiol Renal Physiol 295:F1117–F1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bertorello AM, Komarova Y, Smith K et al (2003) Analysis of Na+, K + -ATPase motion and incorporation into the plasma membrane in response to G protein-coupled receptor signals in living cells. Mol Biol Cell 14:1149–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Doné SC, Leibiger IB, Efendiev R et al (2002) Tyrosine 537 within the Na+, K + -ATPase alpha-subunit is essential for AP-2 binding and clathrin-dependent endocytosis. J Biol Chem 277:17108–17111

    Article  PubMed  CAS  Google Scholar 

  48. Yudowski GA, Efendiev R, Pedemonte CH et al (2000) Phosphoinositide-3 kinase binds to a proline-rich motif in the Na+, K + -ATPase alpha subunit and regulates its trafficking. Proc Natl Acad Sci U S A 97:6556–6561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shani-Sekler M, Goldshleger R, Tal DM, Karlish SJ (1988) Inactivation of Rb + and Na + occlusion on (Na+, K+)-ATPase by modification of carboxyl groups. J Biol Chem 263:19331–19341

    CAS  PubMed  Google Scholar 

  50. Efendiev R, Pedemonte CH (2006) Contrary to rat-type, human-type Na, K-ATPase is phosphorylated at the same amino acid by hormones that produce opposite effects on enzyme activity. J Am Soc Nephrol 17:31–38

    Article  CAS  PubMed  Google Scholar 

  51. Chen Z, Leibiger I, Katz AI, Bertorello AM (2009) Pals-associated tight junction protein functionally links dopamine and angiotensin II to the regulation of sodium transport in renal epithelial cells. Br J Pharmacol 158:486–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weinman EJ, Biswas R, Steplock D et al (2010) Sodium-hydrogen exchanger regulatory factor 1 (NHERF-1) transduces signals that mediate dopamine inhibition of sodium-phosphate co-transport in mouse kidney. J Biol Chem 285:13454–13460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Weinman EJ, Steplock D, Zhang Y et al (2010) Cooperativity between the phosphorylation of Thr95 and Ser77 of NHERF-1 in the hormonal regulation of renal phosphate transport. J Biol Chem 285:25134–25138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Salyer S, Lesousky N, Weinman EJ et al (2011) Dopamine regulation of Na + -K + -ATPase requires the PDZ-2 domain of sodium hydrogen regulatory factor-1 (NHERF-1) in opossum kidney cells. Am J Physiol Cell Physiol 300:C425–C434

    Article  CAS  PubMed  Google Scholar 

  55. Zeng C, Armando I, Luo Y et al (2008) Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice. Am J Physiol Heart Circ Physiol 294:H551–H569

    Article  CAS  PubMed  Google Scholar 

  56. Schiöth HB, Fredriksson R (2005) The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol 142:94–101

    Article  PubMed  CAS  Google Scholar 

  57. Cuevas S, Villar VA, Jose PA, Armando I (2013) Renal dopamine receptors, oxidative stress, and hypertension. Int J Mol Sci 14:17553–17572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zheng S, Yu P, Zeng C et al (2003) Galpha12- and Galpha13-protein subunit linkage of D5 dopamine receptors in the nephron. Hypertension 41:604–610

    Article  CAS  PubMed  Google Scholar 

  59. Jose PA, Soares-da-Silva P, Eisner GM, Felder RA (2010) Dopamine and G protein-coupled receptor kinase 4 in the kidney: role in blood pressure regulation. Biochim Biophys Acta 1802:1259–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yu PY, Eisner GM, Yamaguchi I et al (1996) Dopamine D1A receptor regulation of phospholipase C isoform. J Biol Chem 271:19503–19508

    Article  CAS  PubMed  Google Scholar 

  61. Sahu A, Tyeryar KR, Vongtau HO et al (2009) D5 dopamine receptors are required for dopaminergic activation of phospholipase C. Mol Pharmacol 75:447–453

    Article  CAS  PubMed  Google Scholar 

  62. So CH, Verma V, Alijaniaram M et al (2009) Calcium signaling by dopamine D5 receptor and D5-D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine D1-D2 receptor hetero-oligomers. Mol Pharmacol 75:843–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vieira-Coelho MA, Serrão P, Hussain T et al (2001) Salt intake and intestinal dopaminergic activity in adult and old Fischer 344 rats. Life Sci 69:1957–1968

    Article  CAS  PubMed  Google Scholar 

  64. Hussain T, Lokhandwala MF (2003) Renal dopamine receptors and hypertension. Exp Biol Med (Maywood) 228:134–142

    Article  CAS  Google Scholar 

  65. Zeng C, Sanada H, Watanabe H et al (2004) Functional genomics of the dopaminergic system in hypertension. Physiol Genomics 19:233–246

    Article  CAS  PubMed  Google Scholar 

  66. Jose PA, Eisner GM, Felder RA (2003) Dopamine and the kidney: a role in hypertension? Curr Opin Nephrol Hypertens 12:189–194

    Article  CAS  PubMed  Google Scholar 

  67. Lin C-Y, Varma MG, Joubel A et al (2003) Conserved motifs in somatostatin, D2-dopamine, and alpha 2B-adrenergic receptors for inhibiting the Na-H exchanger, NHE1. J Biol Chem 278:15128–15135

    Article  CAS  PubMed  Google Scholar 

  68. Bacic D, Kaissling B, McLeroy P et al (2003) Dopamine acutely decreases apical membrane Na/H exchanger NHE3 protein in mouse renal proximal tubule. Kidney Int 64:2133–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pedrosa R, Gomes P, Hopfer U et al (2004) Gialpha3 protein-coupled dopamine D3 receptor-mediated inhibition of renal NHE3 activity in SHR proximal tubular cells is a PLC-PKC-mediated event. Am J Physiol Renal Physiol 287:F1059–F1066

    Article  CAS  PubMed  Google Scholar 

  70. Albrecht FE, Xu J, Moe OW et al (2000) Regulation of NHE3 activity by G protein subunits in renal brush-border membranes. Am J Physiol Regul Integr Comp Physiol 278:R1064–R1073

    CAS  PubMed  Google Scholar 

  71. Kocinsky HS, Girardi ACC, Biemesderfer D et al (2005) Use of phospho-specific antibodies to determine the phosphorylation of endogenous Na+/H+ exchanger NHE3 at PKA consensus sites. Am J Physiol Renal Physiol 289:F249–F258

    Article  CAS  PubMed  Google Scholar 

  72. Lederer ED, Sohi SS, McLeish KR (1998) Dopamine regulates phosphate uptake by opossum kidney cells through multiple counter-regulatory receptors. J Am Soc Nephrol 9:975–985

    CAS  PubMed  Google Scholar 

  73. Weinman EJ, Lederer ED (2012) NHERF-1 and the regulation of renal phosphate reabsorption: a tale of three hormones. Am J Physiol Renal Physiol 303:F321–F327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Glahn RP, Onsgard MJ, Tyce GM et al (1993) Autocrine/paracrine regulation of renal Na(+)-phosphate cotransport by dopamine. Am J Physiol 264:F618–F622

    CAS  PubMed  Google Scholar 

  75. Cunningham R, Biswas R, Brazie M et al (2009) Signaling pathways utilized by PTH and dopamine to inhibit phosphate transport in mouse renal proximal tubule cells. Am J Physiol Renal Physiol 296:F355–F361

    Article  CAS  PubMed  Google Scholar 

  76. Baines AD, Drangova R (1998) Does dopamine use several signal pathways to inhibit Na-Pi transport in OK cells? J Am Soc Nephrol 9:1604–1612

    CAS  PubMed  Google Scholar 

  77. Kunimi M, Seki G, Hara C et al (2000) Dopamine inhibits renal Na+:HCO3- cotransporter in rabbits and normotensive rats but not in spontaneously hypertensive rats. Kidney Int 57:534–543

    Article  CAS  PubMed  Google Scholar 

  78. Pedrosa R, Jose PA, Soares-da-Silva P (2004) Defective D1-like receptor-mediated inhibition of the Cl-/HCO3- exchanger in immortalized SHR proximal tubular epithelial cells. Am J Physiol Renal Physiol 286:F1120–F1126

    Article  CAS  PubMed  Google Scholar 

  79. Gildea JJ, Israel JA, Johnson AK et al (2009) Caveolin-1 and dopamine-mediated internalization of NaKATPase in human renal proximal tubule cells. Hypertension 54:1070–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gomes P, Soares-da-Silva P (2002) Dopamine-induced inhibition of Na + -K + -ATPase activity requires integrity of actin cytoskeleton in opossum kidney cells. Acta Physiol Scand 175:93–101

    Article  CAS  PubMed  Google Scholar 

  81. Lucas-Teixeira VA, Hussain T, Serrão P et al (2002) Intestinal dopaminergic activity in obese and lean Zucker rats: response to high salt intake. Clin Exp Hypertens 24:383–396

    Article  CAS  PubMed  Google Scholar 

  82. Khan F, Spicarova Z, Zelenin S et al (2008) Negative reciprocity between angiotensin II type 1 and dopamine D1 receptors in rat renal proximal tubule cells. Am J Physiol Renal Physiol 295:F1110–F1116

    Article  CAS  PubMed  Google Scholar 

  83. Brismar H, Asghar M, Carey RM et al (1998) Dopamine-induced recruitment of dopamine D1 receptors to the plasma membrane. Proc Natl Acad Sci U S A 95:5573–5578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Asghar M, Kansra V, Hussain T, Lokhandwala MF (2001) Hyperphosphorylation of Na-pump contributes to defective renal dopamine response in old rats. J Am Soc Nephrol 12:226–232

    CAS  PubMed  Google Scholar 

  85. Pedemonte CH, Efendiev R, Bertorello AM (2005) Inhibition of Na, K-ATPase by dopamine in proximal tubule epithelial cells. Semin Nephrol 25:322–327

    Article  CAS  PubMed  Google Scholar 

  86. Yao LP, Li XX, Yu PY et al (1998) Dopamine D1 receptor and protein kinase C isoforms in spontaneously hypertensive rats. Hypertension 32:1049–1053

    Article  CAS  PubMed  Google Scholar 

  87. Satoh T, Ominato M, Katz AI (1995) Different mechanisms of renal Na-K-ATPase regulation by dopamine in the proximal and distal nephron. Hypertens Res 18(Suppl 1):S137–S140

    Article  CAS  PubMed  Google Scholar 

  88. Bertorello AM, Sznajder JI (2005) The dopamine paradox in lung and kidney epithelia: sharing the same target but operating different signaling networks. Am J Respir Cell Mol Biol 33:432–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pokkunuri ID, Chugh G, Asghar M (2013) Human kidney-2 cells harbor functional dopamine D1 receptors that require Giα for Gq/11α signaling. Am J Physiol Renal Physiol 305:F560–F567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang X, Luo Y, Escano CS et al (2010) Upregulation of renal sodium transporters in D5 dopamine receptor-deficient mice. Hypertension 55:1431–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Helms MN, Chen X-J, Ramosevac S et al (2006) Dopamine regulation of amiloride-sensitive sodium channels in lung cells. Am J Physiol Lung Cell Mol Physiol 290:L710–L722

    Article  CAS  PubMed  Google Scholar 

  92. Helms MN, Self J, Bao HF et al (2006) Dopamine activates amiloride-sensitive sodium channels in alveolar type I cells in lung slice preparations. Am J Physiol Lung Cell Mol Physiol 291:L610–L618

    Article  CAS  PubMed  Google Scholar 

  93. Sun D, Schafer JA (1996) Dopamine inhibits AVP-dependent Na + transport and water permeability in rat CCD via a D4-like receptor. Am J Physiol 271:F391–F400

    CAS  PubMed  Google Scholar 

  94. Schafer JA (2002) Abnormal regulation of ENaC: syndromes of salt retention and salt wasting by the collecting duct. Am J Physiol Renal Physiol 283:F221–F235

    Article  CAS  PubMed  Google Scholar 

  95. Saito O, Ando Y, Kusano E, Asano Y (2001) Functional characterization of basolateral and luminal dopamine receptors in rabbit CCD. Am J Physiol Renal Physiol 281:F114–F122

    CAS  PubMed  Google Scholar 

  96. Aoki Y, Albrecht FE, Bergman KR, Jose PA (1996) Stimulation of Na(+)-K(+)-2Cl- cotransport in rat medullary thick ascending limb by dopamine. Am J Physiol 271:R1561–R1567

    CAS  PubMed  Google Scholar 

  97. Holmes A, Lachowicz JE, Sibley DR (2004) Phenotypic analysis of dopamine receptor knockout mice; recent insights into the functional specificity of dopamine receptor subtypes. Neuropharmacology 47:1117–1134

    Article  CAS  PubMed  Google Scholar 

  98. Gardner B, Liu ZF, Jiang D, Sibley DR (2001) The role of phosphorylation/dephosphorylation in agonist-induced desensitization of D1 dopamine receptor function: evidence for a novel pathway for receptor dephosphorylation. Mol Pharmacol 59:310–321

    CAS  PubMed  Google Scholar 

  99. Kim O-J, Gardner BR, Williams DB et al (2004) The role of phosphorylation in D1 dopamine receptor desensitization: evidence for a novel mechanism of arrestin association. J Biol Chem 279:7999–8010

    Article  CAS  PubMed  Google Scholar 

  100. Tiberi M, Nash SR, Bertrand L et al (1996) Differential regulation of dopamine D1A receptor responsiveness by various G protein-coupled receptor kinases. J Biol Chem 271:3771–3778

    Article  CAS  PubMed  Google Scholar 

  101. Zhang B, Albaker A, Plouffe B et al (2014) Constitutive activities and inverse agonism in dopamine receptors. Adv Pharmacol 70:175–214

    Article  CAS  PubMed  Google Scholar 

  102. Gainetdinov RR, Premont RT, Bohn LM et al (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144

    Article  CAS  PubMed  Google Scholar 

  103. Rankin ML, Marinec PS, Cabrera DM et al (2006) The D1 dopamine receptor is constitutively phosphorylated by G protein-coupled receptor kinase 4. Mol Pharmacol 69:759–769. doi:10.1124/mol.105.019901

    CAS  PubMed  Google Scholar 

  104. Zeng C, Jose PA (2011) Dopamine receptors: important antihypertensive counterbalance against hypertensive factors. Hypertension 57:11–17

    Article  CAS  PubMed  Google Scholar 

  105. Felder RA, Sanada H, Xu J et al (2002) G protein-coupled receptor kinase 4 gene variants in human essential hypertension. Proc Natl Acad Sci U S A 99:3872–3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Morgadinho MT, Fontes Ribeiro CA, Macedo TR (1999) Presynaptic dopamine receptors involved in the inhibition of noradrenaline and dopamine release in the human gastric and uterine arteries. Fundam Clin Pharmacol 13:662–670

    Article  CAS  PubMed  Google Scholar 

  107. Brismar H, Agrèn M, Holtbäck U (2002) beta-Adrenoceptor agonist sensitizes the dopamine-1 receptor in renal tubular cells. Acta Physiol Scand 175:333–340

    Article  CAS  PubMed  Google Scholar 

  108. Chugh G, Pokkunuri I, Asghar M (2013) Renal dopamine and angiotensin II receptor signaling in age-related hypertension. Am J Physiol Renal Physiol 304:F1–F7

    Article  CAS  PubMed  Google Scholar 

  109. De Luca Sarobe V, Nowicki S, Carranza A et al (2005) Low sodium intake induces an increase in renal monoamine oxidase activity in the rat. Involvement of an angiotensin II dependent mechanism. Acta Physiol Scand 185:161–167

    Article  PubMed  Google Scholar 

  110. Zeng C, Luo Y, Asico LD et al (2003) Perturbation of D1 dopamine and AT1 receptor interaction in spontaneously hypertensive rats. Hypertension 42:787–792

    Article  CAS  PubMed  Google Scholar 

  111. Gildea JJ, Wang X, Jose PA, Felder RA (2008) Differential D1 and D5 receptor regulation and degradation of the angiotensin type 1 receptor. Hypertension 51:360–366

    Article  CAS  PubMed  Google Scholar 

  112. Li H, Armando I, Yu P et al (2008) Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells. J Clin Invest 118:2180–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bek MJ, Wang X, Asico LD et al (2006) Angiotensin-II type 1 receptor-mediated hypertension in D4 dopamine receptor-deficient mice. Hypertension 47:288–295

    Article  CAS  PubMed  Google Scholar 

  114. Chen C, Lokhandwala MF (1995) Potentiation by enalaprilat of fenoldopam-evoked natriuresis is due to blockade of intrarenal production of angiotensin-II in rats. Naunyn Schmiedebergs Arch Pharmacol 352:194–200

    Article  CAS  PubMed  Google Scholar 

  115. Zeng C, Liu Y, Wang Z et al (2006) Activation of D3 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells. Circ Res 99:494–500

    Article  CAS  PubMed  Google Scholar 

  116. Salomone LJ, Howell NL, McGrath HE et al (2007) Intrarenal dopamine D1-like receptor stimulation induces natriuresis via an angiotensin type-2 receptor mechanism. Hypertension 49:155–161

    Article  CAS  PubMed  Google Scholar 

  117. Zhang M-Z, Yao B, Fang X et al (2009) Intrarenal dopaminergic system regulates renin expression. Hypertension 53:564–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Asico LD, Ladines C, Fuchs S et al (1998) Disruption of the dopamine D3 receptor gene produces renin-dependent hypertension. J Clin Invest 102:493–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Banday AA, Marwaha A, Tallam LS, Lokhandwala MF (2005) Tempol reduces oxidative stress, improves insulin sensitivity, decreases renal dopamine D1 receptor hyperphosphorylation, and restores D1 receptor-G-protein coupling and function in obese Zucker rats. Diabetes 54:2219–2226

    Article  CAS  PubMed  Google Scholar 

  120. Lu Q, Yang Y, Villar VA et al (2013) D5 dopamine receptor decreases NADPH oxidase, reactive oxygen species and blood pressure via heme oxygenase-1. Hypertens Res 36:684–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Banday AA, Lokhandwala MF (2008) Oxidative stress-induced renal angiotensin AT1 receptor upregulation causes increased stimulation of sodium transporters and hypertension. Am J Physiol Renal Physiol 295:F698–F706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Banday AA, Fazili FR, Lokhandwala MF (2007) Insulin causes renal dopamine D1 receptor desensitization via GRK2-mediated receptor phosphorylation involving phosphatidylinositol 3-kinase and protein kinase C. Am J Physiol Renal Physiol 293:F877–F884

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Sources of Funding: These studies were supported by Scientist Development Grant and a Grant-in-Aid from American Heart Association and from National Institute of Health (AG047474-01) to SJK and VAMR to EDL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed J. Khundmiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khundmiri, S.J., Murray, R.D., Lederer, E.D. (2016). Advances in the Understanding of Renal Proximal Tubular Na+/K+ ATPase Regulation by Parathyroid Hormone and Dopamine. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_22

Download citation

Publish with us

Policies and ethics