Skip to main content

Imaging of Fermented Dairy Products

  • Chapter
  • First Online:
Imaging Technologies and Data Processing for Food Engineers

Part of the book series: Food Engineering Series ((FSES))

Abstract

The spatial organisation of the structural components in gelled dairy products plays a crucial role in their textural and sensorial attributes as well as on their storage stability. Colloidal protein aggregates, fat globules, bacterial (exopolysaccharides) or added polysaccharides comprise the main structure-forming elements in fermented milk products. Noninvasive characterisation of the microstructure of dairy gels has been challenging due to high water content (up to 90 %) and the presence of milk fat with a low melting point. The structure is usually unstable and changes upon minimal shearing or temperature stress. Thus, microscopy techniques that allow visualisation of multicomponent systems in their hydrated or naturally preserved state are necessary for thorough structural analysis. Confocal laser scanning microscopy (CLSM) is one of the most widely used techniques for microstructural characterisation of dairy products as it allows analysis in undisturbed, fully hydrated state and optical sectioning. Electron microscopy techniques are complementary to CLSM and provide high-resolution imaging of nanoscaled and mesoscaled structures. For conventional scanning electron microscopy (SEM) and transmission electron microscopy (TEM), harsh sample preparation including fixation of fat, extensive cross-linking of proteins and slab dehydration are necessary and may cause artefacts in certain structural elements. Cryo- and environmental-electron microscopy, which allows observation of specimens without need of harsh fixation steps or staining, has been successfully applied to gelled dairy products. In this chapter, widely used techniques for imaging of the protein network, distribution of fat and other components in the structural matrix of fermented dairy products are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhyankar AR, Mulvihill DM, Chaurin V, Auty MAE (2011) Techniques for localisation of konjac glucomannan in model milk protein–polysaccharide mixed systems: Physicochemical and microscopic investigations. Food Chem 129(4):1362–1368. doi:http://dx.doi.org/10.1016/j.foodchem.2011.05.052

    Article  CAS  Google Scholar 

  • Abhyankar AR, Mulvihill DM, Auty MAE (2014) Combined confocal microscopy and large deformation analysis of emulsion filled gels and stirred acid milk gels. Food Struct 1(2):127–136. doi:http://dx.doi.org/10.1016/j.foostr.2013.12.001

    Article  Google Scholar 

  • Aichinger P-A, Michel M, Servais C, Dillmann M-L, Rouvet M, D’Amico N, Zink R, Klostermeyer H, Horne DS (2003) Fermentation of a skim milk concentrate with Streptococcus thermophilus and chymosin: structure, viscoelasticity and syneresis of gels. Coll Surf B Biointerfaces 31(1–4):243–255. doi:http://dx.doi.org/10.1016/S0927-7765(03)00144-9

    Article  CAS  Google Scholar 

  • Aichinger P-A, Dillmann M-L, Rami-Shojaei S, Michel M, Horne DS (2006) Xanthan gum in skim milk: designing structure into acid milk gels. In: Dickinson E, Leser ME (eds) Food colloids: self-assembly and material science. Royal Society of Chemistry, Cambridge, pp 283–296

    Google Scholar 

  • Amatayakul T, Sherkat F, Shah NP (2006) Physical characteristics of set yoghurt made with altered casein to whey protein ratios and EPS-producing starter cultures at 9 and 14 % total solids. Food Hydrocoll 20(2–3):314–324. doi:http://dx.doi.org/10.1016/j.foodhyd.2005.02.015

    Article  CAS  Google Scholar 

  • Arltoft D, Ipsen R, Christensen N, Madsen F (2006a) Localising pectin in dairy products using direct immunostaining. In: Williams PA, Phillips GO (eds) Gums and Stabilisers for the Food Industry, vol 13. The Royal Society of Chemistry, Cambridge, pp 41–50

    Google Scholar 

  • Arltoft D, Madsen F, Ipsen R (2006b) Characterizing low ester pectin microstructure in model milk gels by direct immunostaining and CLSM. In: 4th International Symposium on Food Rheology and Structure, Zurich, Switzerland. pp 91–95

    Google Scholar 

  • Arltoft D, Madsen F, Ipsen R (2007) Screening of probes for specific localisation of polysaccharides. Food Hydrocoll 21(7):1062–1071. doi:http://dx.doi.org/10.1016/j.foodhyd.2006.07.020

    Article  CAS  Google Scholar 

  • Arltoft D, Madsen F, Ipsen R (2008) Relating the microstructure of pectin and carrageenan in dairy desserts to rheological and sensory characteristics. Food Hydrocoll 22(4):660–673. doi:http://dx.doi.org/10.1016/j.foodhyd.2007.01.025

    Article  CAS  Google Scholar 

  • Auty MAE (2013) Confocal microscopy: principles and applications to food microstructures. In: Morris VJ, Groves K (eds) Food microstructures: microscopy, meausrement and modelling. Woodhead Publishing, Cambridge, pp 96–131

    Chapter  Google Scholar 

  • Auty MAE, Fenelon MA, Guinee TP, Mullins C, Mulvihill DM (1999) Dynamic confocal scanning laser microscopy methods for studying milk protein gelation and cheese melting. Scanning 21(5):299–304. doi:10.1002/sca.4950210503

    Article  CAS  Google Scholar 

  • Auty MAE, O’Kennedy BT, Allan-Wojtas P, Mulvihill DM (2005) The application of microscopy and rheology to study the effect of milk salt concentration on the structure of acidified micellar casein systems. Food Hydrocoll 19(1):101–109. doi:http://dx.doi.org/10.1016/j.foodhyd.2004.04.019

    Article  CAS  Google Scholar 

  • Ayala-Hernandez I, Goff HD, Corredig M (2008) Interactions between milk proteins and exopolysaccharides produced by Lactococcus lactis observed by scanning electron microscopy. J Dairy Sci 91(7):2583–2590. doi:10.3168/jds.2007–0876

    Article  CAS  Google Scholar 

  • Ayala-Hernández I, Hassan AN, Goff HD, Corredig M (2009) Effect of protein supplementation on the rheological characteristics of milk permeates fermented with exopolysaccharide-producing Lactococcus lactis subsp. cremoris. Food Hydrocoll 23(5):1299–1304. doi:http://dx.doi.org/10.1016/j.foodhyd.2008.11.004

    Article  CAS  Google Scholar 

  • Brink J, Langton M, Stading M, Hermansson A-M (2007) Simultaneous analysis of the structural and mechanical changes during large deformation of whey protein isolate/gelatin gels at the macro and micro levels. Food Hydrocoll 21(3):409–419. doi:http://dx.doi.org/10.1016/j.foodhyd.2006.04.012

    Article  CAS  Google Scholar 

  • Bromley EHC, Krebs MRH, Donald AM (2006) Mechanisms of structure formation in particulate gels of β-lactoglobulin formed near the isoelectric point. Eur Phys J E 21(2):145–152. doi:10.1140/epje/i2006-10055-7

    Article  CAS  Google Scholar 

  • Choi J, Horne DS, Lucey JA (2007) Effect of insoluble calcium concentration on rennet coagulation properties of milk. J Dairy Sci 90(6):2612–2623. doi:http://dx.doi.org/10.3168/jds.2006-814

    Article  CAS  Google Scholar 

  • Ciron CIE, Gee VL, Kelly AL, Auty MAE (2010) Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. Int Dairy J 20(5):314–320

    Article  Google Scholar 

  • Ciron CIE, Gee VL, Kelly AL, Auty MAE (2012) Modifying the microstructure of low-fat yoghurt by microfluidisation of milk at different pressures to enhance rheological and sensory properties. Food Chem 130(3):510–519. doi:http://dx.doi.org/10.1016/j.foodchem.2011.07.056

    Article  CAS  Google Scholar 

  • Claxton NS, Fellers TJ, Davidson MW (2006) Laser scanning confocal microscopy. Department of Optical Microscopy and Digital Imaging, Florida State University, Tallahassee, http://wwwolympusconfocalcom/theory/LSCMIntropdf

    Google Scholar 

  • Corredig M, Sharafbafi N, Kristo E (2011) Polysaccharide–protein interactions in dairy matrices, control and design of structures. Food Hydrocolloids 25(8):1833–1841. doi:http://dx.doi.org/10.1016/j.foodhyd.2011.05.014

    Article  CAS  Google Scholar 

  • Dalgleish DG (2011) On the structural models of bovine casein micelles-review and possible improvements. Soft Matter 7(6):2265–2272. doi:10.1039/C0SM00806K

    Article  CAS  Google Scholar 

  • Dalgleish DG, Corredig M (2012) The structure of the casein micelle of milk and its changes during processing. Annu Rev Food Sci Technol 3(1):449–467. doi:10.1146/annurev-food-022811-101214

    Google Scholar 

  • Dalgleish DG, Spagnuolo PA, Douglas GH (2004) A possible structure of the casein micelle based on high-resolution field-emission scanning electron microscopy. Int Dairy J 14(12):1025–1031. doi:10.1016/j.idairyj.2004.04.008

    Article  CAS  Google Scholar 

  • De Kruif CG (1999) Casein micelle interactions. Int Dairy J 9:183–188

    Article  CAS  Google Scholar 

  • Devaux M-F, Bouchet B, Legland D, Guillon F, Lahaye M (2008) Macro-vision and grey level granulometry for quantification of tomato pericarp structure. Postharvest Biol Technol 47(2):199–209. doi:http://dx.doi.org/10.1016/j.postharvbio.2007.06.017

    Google Scholar 

  • Donald AM (2003) In situ deformation of hydrated food samples. In: Dickinson E, Van Vliet T (eds) Food colloids, biopolymers and materials. Royal Society of Chemistry, Cambridge, pp 245–255

    Chapter  Google Scholar 

  • Donato L, Guyomarc’h F (2009) Formation and properties of the whey protein/κ-casein complexes in heated skim milk—A review. Dairy Sci Technol 89(1):3–29

    Google Scholar 

  • Dudkiewicz A, Tiede K, Loeschner K, Jensen LHS, Jensen E, Wierzbicki R, Boxall ABA, Molhave K (2011) Characterization of nanomaterials in food by electron microscopy. Trends Anal Chem 30(1):28–43. doi:http://dx.doi.org/10.1016/j.trac.2010.10.007

    Article  CAS  Google Scholar 

  • Dürrenberger MB, Handschin S, Conde-Petit B, Escher F (2001) Visualization of food structure by confocal laser scanning microscopy (CLSM). LWT Food Sci Technol 34(1):11–17. doi:http://dx.doi.org/10.1006/fstl.2000.0739

    Google Scholar 

  • El-Bakry M, Duggan E, O’Riordan ED, O’Sullivan M (2011) Casein hydration and fat emulsification during manufacture of imitation cheese, and effects of emulsifying salts reduction. J Food Eng 103(2):179–187. doi:http://dx.doi.org/10.1016/j.jfoodeng.2010.10.014

    Article  CAS  Google Scholar 

  • El-Bakry M, Sheehan J (2014) Analysing cheese microstructure: a review of recent developments. J Food Eng 125:84–96. doi:http://dx.doi.org/10.1016/j.jfoodeng.2013.10.030

    Article  Google Scholar 

  • Ercili Cura D, Lantto R, Lille M, Andberg M, Kruus K, Buchert J (2009) Laccase-aided protein modification: effects on the structural properties of acidified sodium caseinate gels. Int Dairy J 19(12):737–745. doi:10.1016/j.idairyj.2009.06.007

    Article  CAS  Google Scholar 

  • Ercili Cura D, Lille M, Partanen R, Kruus K, Buchert J, Lantto R (2010) Effect of Trichoderma reesei tyrosinase on rheology and microstructure of acidified milk gels. Int Dairy J 20(12):830–837. doi:10.1016/j.idairyj.2010.06.008

    Article  CAS  Google Scholar 

  • Ercili-Cura D, Lille M, Legland D, Gaucel S, Poutanen K, Partanen R, Lantto R (2014) Structural mechanisms leading to improved water retention in acid milk gels by use of transglutaminase. Food Hydrocoll 30(1):419–427. doi:http://dx.doi.org/10.1016/j.foodhyd.2012.07.008

    Article  CAS  Google Scholar 

  • Everett DW, McLeod RE (2005) Interactions of polysaccharide stabilisers with casein aggregates in stirred skim-milk yoghurt. Int Dairy J 15(11):1175–1183. doi:http://dx.doi.org/10.1016/j.idairyj.2004.12.004

    Article  CAS  Google Scholar 

  • Farrell Jr HM, Malin EL, Brown EM, Qi PX (2006) Casein micelle structure: what can be learned from milk synthesis and structural biology? Curr Opin Coll Interf Sci 11(2–3):135–147. doi:10.1016/j.cocis.2005.11.005

    Google Scholar 

  • Ferrando M, Spiess WEL (2000) Review: confocal scanning laser microscopy. A powerful tool in food science revision: Microscopía láser confocal de barrido. Una potente herramienta en la ciencia de los alimentos. Food Sci Technol Int 6(4):267–284. doi:10.1177/108201320000600402

    Article  CAS  Google Scholar 

  • Folkenberg DM, Dejmek P, Skriver A, Ipsen R (2005) Relation between sensory texture properties and exopolysaccharide distribution in set and stirred yoghurts produced with different starter cultures. J Texture Stud 36(2):174–189. doi:10.1111/j.1745-4603.2005.00010.x

    Google Scholar 

  • Fox PF (2003) Milk proteines: general and historical aspects. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry, vol 1 Part A. vol 3rd edition. Kluwer Academic/Plenum Publishers, New York, pp 1–48

    Google Scholar 

  • Fox PF, Brodkorb A (2008) The casein micelle: historical aspects, current concepts and significance. Int Dairy J 18(7):677–684. doi:10.1016/j.idairyj.2008.03.002

    Article  CAS  Google Scholar 

  • Gastaldi E, Lagaude A, De La Fuente BT (1996) Micellar transition state in casein between pH 5.5 and 5.0. J Food Sci 61(1):59–64. doi:10.1111/j.1365-2621.1996.tb14725.x

    Article  CAS  Google Scholar 

  • Girard M, Schaffer-Lequart C (2007a) Gelation and resistance to shearing of fermented milk: role of exopolysaccharides. Int Dairy J 17(6):666–673. doi:http://dx.doi.org/10.1016/j.idairyj.2006.08.007

    Article  CAS  Google Scholar 

  • Girard M, Schaffer-Lequart C (2007b) Gelation of skim milk containing anionic exopolysaccharides and recovery of texture after shearing. Food Hydrocoll 21(7):1031–1040. doi:http://dx.doi.org/10.1016/j.foodhyd.2006.07.012

    Article  CAS  Google Scholar 

  • Girard M, Schaffer-Lequart C (2008) Attractive interactions between selected anionic exopolysaccharides and milk proteins. Food Hydrocolloids 22(8):1425–1434. doi:http://dx.doi.org/10.1016/j.foodhyd.2007.09.001

    Article  CAS  Google Scholar 

  • González-Martínez C, Becerra M, Cháfer M, Albors A, Carot JM, Chiralt A (2002) Influence of substituting milk powder for whey powder on yoghurt quality. Trends Food Sci Technol 13(9–10):334–340. doi:http://dx.doi.org/10.1016/S0924-2244(02)00160-7

    Article  Google Scholar 

  • Guillemin F, Guillon F, Bonnin E, Devaux M-F, Chevalier T, Knox JP, Liners F, Thibault JF (2005) Distribution of pectic epitopes in cell walls of the sugar beet root. Planta 222(2):355–371

    Article  CAS  Google Scholar 

  • Guyomarc’h F, Jemin M, Le Tilly V, Madec M-N, Famelart M-H (2009) Role of the heat-induced whey protein/κ-casein complexes in the formation of acid milk gels: a kinetic study using rheology and confocal microscopy. J Agric Food Chem 57(13):5910–5917. doi:10.1021/jf804042k

    Article  CAS  Google Scholar 

  • Hahn C, Sramek M, Nöbel S, Hinrichs J (2012) Post-processing of concentrated fermented milk: influence of temperature and holding time on the formation of particle clusters. Dairy Sci Technol 92(1):91–107. doi:10.1007/s13594-011-0046-1

    Article  Google Scholar 

  • Hassan AN (2008) ADSA Foundation scholar award: possibilities and challenges of exopolysaccharide-producing lactic cultures in dairy foods. J Dairy Sci 91(4):1282–1298

    Article  CAS  Google Scholar 

  • Hassan AN, Awad S (2005) Application of exopolysaccharide-producing cultures in reduced-fat cheddar cheese: cryo-Scanning electron microscopy observations. J Dairy Sci 88(12):4214–4220. doi:http://dx.doi.org/10.3168/jds.S0022-0302(05)73107-6

    Article  CAS  Google Scholar 

  • Hassan AN, Frank JF, Farmer MA, Schmidt KA, Shalabi SI (1995) Formation of yogurt microstructure and three-dimensional visualization as determined by confocal scanning laser microscopy. J Dairy Sci 78(12):2629–2636

    Article  CAS  Google Scholar 

  • Hassan AN, Frank JF, Qvist KB (2002) Direct observation of bacterial exopolysaccharides in dairy products using confocal scanning laser microscopy. J Dairy Sci 85(7):1705–1708

    Article  CAS  Google Scholar 

  • Hassan AN, Frank JF, Elsoda M (2003a) Observation of bacterial exopolysaccharide in dairy products using cryo-scanning electron microscopy. Int Dairy J 13(9):755–762. doi:http://dx.doi.org/10.1016/S0958-6946(03)00101-8

    Article  CAS  Google Scholar 

  • Hassan AN, Ipsen R, Janzen T, Qvist KB (2003b) Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides. J Dairy Sci 86(5):1632–1638

    Article  CAS  Google Scholar 

  • Hassan AN, Corredig M, Frank JF, Elsoda M (2004) Microstructure and rheology of an acid-coagulated cheese (Karish) made with an exopolysaccharide-producing Streptococcus thermophilus strain and its exopolysaccharide non-producing genetic variant. J Dairy Res 71(01):116–120. doi:10.1017/S0022029903006605

    Article  CAS  Google Scholar 

  • Heilig A, Göggerle A, Hinrichs J (2009) Multiphase visualisation of fat containing β-lactoglobulin–κ-carrageenan gels by confocal scanning laser microscopy, using a novel dye, V03-01136, for fat staining. LWT—Food Sci Technol 42(2):646–653. doi:http://dx.doi.org/10.1016/j.lwt.2008.08.006

    Google Scholar 

  • Herbert S, Bouchet B, Riaublanc A, Dufour E, Gallant D, J. (1999) Multiple fluorescence labelling of proteins, lipids and whey in dairy products using confocal microscopy. Lait 79(6):567–575

    Article  CAS  Google Scholar 

  • Hermansson A-M (2008) Structuring water by gelation. In: Aguilera JM, Lillford PJ (eds) Food Materials Science. Food Engineering: principles and practice. Springer, New York. pp 255–280. doi:10.1007/978-0-387-71947-4_13

    Google Scholar 

  • Horne DS (1986) Steric stabilization and casein micelle stability. J Coll Interface Sci 111(1):250–260

    Article  CAS  Google Scholar 

  • Horne DS (1999) Formation and structure of acidified milk gels. Int Dairy J 9(3–6):261–268

    Article  CAS  Google Scholar 

  • Horne DS (2003) Casein micelles as hard spheres: limitations of the model in acidified gel formation. Coll Surfaces A Physicochem Eng Asp 213(2–3):255–263. doi:10.1016/s0927-7757(02)00518-6

    Article  CAS  Google Scholar 

  • Horne DS (2006) Casein micelle structure: models and muddles. Curr Opin Coll Interface Sci 11(2–3):148–153. doi:10.1016/j.cocis.2005.11.004

    Article  CAS  Google Scholar 

  • Impoco G, Fucà N, Pasta C, Caccamo M, Licitra G (2012) Quantitative analysis of nanostructures’ shape and distribution in micrographs using image analysis. Comput Electron Agric 84:26–35. doi:http://dx.doi.org/10.1016/j.compag.2012.02.013

    Google Scholar 

  • Jensen S, Rolin C, Ipsen R (2010) Stabilisation of acidified skimmed milk with HM pectin. Food Hydrocoll 24(4):291–299. doi:http://dx.doi.org/10.1016/j.foodhyd.2009.10.004

    Article  CAS  Google Scholar 

  • Kalab M, Allan-Wojtas P, Phipps-Todd BE (1983) Development of microstructure in set-style nonfat yoghurt-a review. Food Microstruct 2:51–66

    Google Scholar 

  • Kalab M, Larocque G (1996) Suitability of agar gel encapsulation of milk and cream for electron microscopy. LWT Food Sci Technol 29:368–371

    Google Scholar 

  • Karlsson AO, Ipsen R, Ardö Y (2007) Observations of casein micelles in skim milk concentrate by transmission electron microscopy. LWT Food Sci Technol 40(6):1102–1107. doi:http://dx.doi.org/10.1016/j.lwt.2006.05.012

    Google Scholar 

  • Knudsen JC, Skibsted LH (2010) High pressure effects on the structure of casein micelles in milk as studied by cryo-transmission electron microscopy. Food Chem 119(1):202–208. doi:10.1016/j.foodchem.2009.06.017

    Article  CAS  Google Scholar 

  • Kristo E, Miao Z, Corredig M (2011) The role of exopolysaccharide produced by Lactococcus lactis subsp. cremoris in structure formation and recovery of acid milk gels. Int Dairy J 21(9):656–662. doi:http://dx.doi.org/10.1016/j.idairyj.2011.02.002

    Article  CAS  Google Scholar 

  • Krzeminski A, Großhable K, Hinrichs J (2011) Structural properties of stirred yoghurt as influenced by whey proteins. LWT Food Sci Technol 44(10):2134–2140. doi:http://dx.doi.org/10.1016/j.lwt.2011.05.018

    Google Scholar 

  • Kuhn KR, Cavallieri ÂLF, Da Cunha RL (2010) Cold-set whey protein gels induced by calcium or sodium salt addition. Int J Food Sci Technol 45(2):348–357. doi:10.1111/j.1365-2621.2009.02145.x

    Article  CAS  Google Scholar 

  • Lakemond CMM, van Vliet T (2008) Rheological properties of acid skim milk gels as affected by the spatial distribution of the structural elements and the interaction forces between them. Int Dairy J 18(5):585–593

    Article  CAS  Google Scholar 

  • Laneuville SI, Turgeon SL (2014) Microstructure and stability of skim milk acid gels containing an anionic bacterial exopolysaccharide and commercial polysaccharides. Int Dairy J 37(1):5–15. doi:http://dx.doi.org/10.1016/j.idairyj.2014.01.014

    Article  CAS  Google Scholar 

  • Lin C, Chen J, Corredig M, Hill A (2012) Soy/milk cheese-type and yoghurt-type products and method of making.

    Google Scholar 

  • Liu Q, Talbot M, Llewellyn DJ (2013) Pectin methylesterase and pectin remodelling differ in the fibre walls of two Gossypium species with very different fibre properties. PLoS ONE 8(6):e65131. doi:10.1371/journal.pone.0065131

    Article  CAS  Google Scholar 

  • Lucey JA (2007) Microstructural approaches to the study and improvement of cheese and yoghurt products. In: McClements DJ (ed) Understanding and controlling the microstructure of complex food. Woodhead Publishing, Cambridge, pp 600–621. doi:10.1533/9781845693671.4.600

    Chapter  Google Scholar 

  • Lucey JA, Teo CT, Munro PA, Singh H (1997) Rheological properties at small (dynamic) and large (yield) deformations of acid gels made from heated milk. J Dairy Res 64(4):591–600

    Article  CAS  Google Scholar 

  • Lucey JA, Tamehana M, Singh H, Munro PA (1998) Effects of interactions between denaturated whey proteins and casein micelles on the formation and rheological properties of acid skim milk gels. J Dairy Res 65:555–567

    Article  CAS  Google Scholar 

  • Marchin S, Putaux J-L, Pignon F, Leonil J (2007) Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle x-ray scattering/ultrasmall-angle x-ray scattering. J Chem Phy 126(4):1–10

    Google Scholar 

  • Martín-Diana AB, Janer C, Peláez C, Requena T (2004) Effect of milk fat replacement by polyunsaturated fatty acids on the microbiological, rheological and sensorial properties of fermented milks. J Sci Food Agric 84(12):1599–1605. doi:10.1002/jsfa.1844

    Article  CAS  Google Scholar 

  • Martin AH, Douglas Goff H, Smith A, Dalgleish DG (2006) Immobilization of casein micelles for probing their structure and interactions with polysaccharides using scanning electron microscopy (SEM). Food Hydrocoll 20(6):817–824. doi:http://dx.doi.org/10.1016/j.foodhyd.2005.08.004

    Article  CAS  Google Scholar 

  • Matia-Merino L, Singh H (2007) Acid-induced gelation of milk protein concentrates with added pectin: effect of casein micelle dissociation. Food Hydrocoll 21(5–6):765–775. doi:http://dx.doi.org/10.1016/j.foodhyd.2006.12.007

    Article  CAS  Google Scholar 

  • McMahon DJ, Oommen BS (2008) Supramolecular structure of the casein micelle. J Dairy Sci 91(5):1709–1721

    Article  CAS  Google Scholar 

  • McMahon DJ, Oommen BS (2013) Casein micelle structure, functions, and interactions. In: McSweeney PLH, Fox PF (eds) Advanced Dairy Chemistry, vol 1A Proteins: basic Aspects. Springer, US, pp 185–209. doi:10.1007/978-1-4614-4714-6_6

    Google Scholar 

  • McMahon DJ, Du H, McManus WR, Larsen KM (2009) Microstructural changes in casein supramolecules during acidification of skim milk. J Dairy Sci 92(12):5854–5867. doi:http://dx.doi.org/10.3168/jds.2009–2324

    Article  CAS  Google Scholar 

  • Mellema M, Walstra P, van Opheusden JHJ, van Vliet T (2002a) Effects of structural rearrangements on the rheology of rennet-induced casein particle gels. Adv Coll Interface Sci 98(1):25–50. doi:10.1016/s0001-8686(01)00089-6

    Article  CAS  Google Scholar 

  • Mellema M, van Opheusden JHJ, van Vliet T (2002b) Categorization of rheological scaling models for particle gels applied to casein gels. J Rheol 46(1):11–29

    Article  CAS  Google Scholar 

  • Morand M, Dekkari A, Guyomarc’h F, Famelart M-H (2012a) Increasing the hydrophobicity of the heat-induced whey protein complexes improves the acid gelation of skim milk. Int Dairy J 25(2):103–111. doi:http://dx.doi.org/10.1016/j.idairyj.2012.03.002

    Article  CAS  Google Scholar 

  • Morand M, Guyomarc’h F, Legland D, Famelart M-H (2012b) Changing the isoelectric point of the heat-induced whey protein complexes affects the acid gelation of skim milk. Int Dairy J 23(1):9–17. doi:http://dx.doi.org/10.1016/j.idairyj.2011.10.006

    Article  CAS  Google Scholar 

  • Morell P, Hernando I, Llorca E, Fiszman S (2015) Yogurts with an increased protein content and physically modified starch: rheological, structural, oral digestion and sensory properties related to enhanced satiating capacity. Food Res Int 70:64–73. doi:http://dx.doi.org/10.1016/j.foodres.2015.01.024

    Article  CAS  Google Scholar 

  • Myllärinen P, Buchert J, Autio K (2007) Effect of transglutaminase on rheological properties and microstructure of chemically acidified sodium caseinate gels. Int Dairy J 17(7):800–807

    Article  CAS  Google Scholar 

  • Nayebzadeh K, Chen J, Dickinson E, Moschakis T (2006) Surface structure smoothing effect of polysaccharide on a heat-set protein particle gel. Langmuir 22(21):8873–8880. doi:10.1021/la060419o

    Article  CAS  Google Scholar 

  • Nguyen HTH, Ong L, Kentish SE, Gras SL (2014a) The effect of fermentation temperature on the microstructure, physicochemical and rheological properties of probiotic buffalo yoghurt. Food Bioprocess Technol 7(9):2538–2548. doi:10.1007/s11947-014-1278-x

    Google Scholar 

  • Nguyen HTH, Ong L, Lefèvre C, Kentish SE, Gras SL (2014b) The microstructure and physicochemical properties of probiotic buffalo yoghurt during fermentation and storage: a comparison with bovine yoghurt. Food Bioprocess Technol 7(4):937–953. doi:10.1007/s11947-013-1082-z

    Google Scholar 

  • Nicolas Y, Paques M, Knaebel A, Steyer A, Munch J-P, Blijdenstein TBJ, van Aken GA (2003a) Microrheology: structural evolution under static and dynamic conditions by simultaneous analysis of confocal microscopy and diffusing wave spectroscopy. Rev Sci Instrum 74(8):3838–3844. doi:http://dx.doi.org/10.1063/1.1588747

    Article  CAS  Google Scholar 

  • Nicolas Y, Paques M, van den Ende D, Dhont JKG, van Polanen RC, Knaebel A, Steyer A, Munch J-P, Blijdenstein TBJ, van Aken GA (2003b) Microrheology: new methods to approach the functional properties of food. Food Hydrocoll 17(6):907–913. doi:http://dx.doi.org/10.1016/S0268-005X(03)00113-9

    Article  CAS  Google Scholar 

  • Nöbel S, Hahn C, Hitzmann B, Hinrichs J (2014) Rheological properties of microgel suspensions: viscoelastic modelling of microstructural elements from casein micelles to fermented dairy products. Int Dairy J 39(1):157–166. doi:http://dx.doi.org/10.1016/j.idairyj.2014.06.001

    Article  CAS  Google Scholar 

  • Olsson C, Langton M, Hermansson A-M (2002) Dynamic measurements of β-lactoglobulin structures during aggregation, gel formation and gel break-up in mixed biopolymer systems. Food Hydrocoll 16(5):477–488. doi:http://dx.doi.org/10.1016/S0268-005X(01)00125-4

    Article  CAS  Google Scholar 

  • Ong L, Dagastine RR, Kentish SE, Gras SL (2011) Microstructure of milk gel and cheese curd observed using cryo scanning electron microscopy and confocal microscopy. LWT Food Sci Technol 44(5):1291–1302. doi:http://dx.doi.org/10.1016/j.lwt.2010.12.026

    Google Scholar 

  • Ong L, Dagastine R, Kentish S, Gras S (2013a) Microstructure and composition of full fat cheddar cheese made with ultrafiltered milk retentate. Foods 2(3):310–331

    Article  CAS  Google Scholar 

  • Ong L, Dagastine RR, Kentish SE, Gras SL (2013b) The effect of calcium chloride addition on the microstructure and composition of Cheddar cheese. Int Dairy J 33(2):135–141. doi:http://dx.doi.org/10.1016/j.idairyj.2013.03.002

    Article  CAS  Google Scholar 

  • Ong L, Soodam K, Kentish SE, Powell IB, Gras SL (2015) The addition of calcium chloride in combination with a lower draining pH to change the microstructure and improve fat retention in Cheddar cheese. Int Dairy J 46:53–62. doi:http://dx.doi.org/10.1016/j.idairyj.2014.07.003

    Article  CAS  Google Scholar 

  • Ouanezar M, Guyomarc’h F, Bouchoux A (2012) AFM imaging of milk casein micelles: evidence for structural rearrangement upon acidification. Langmuir 28(11):4915–4919. doi:10.1021/la3001448

    Article  CAS  Google Scholar 

  • Ozcan T, Horne D, Lucey JA (2011) Effect of increasing the colloidal calcium phosphate of milk on the texture and microstructure of yogurt. J Dairy Sci 94(11):5278–5288. doi:10.3168/jds.2010-3932

    Article  CAS  Google Scholar 

  • Pang Z, Deeth H, Bansal N (2015a) Effect of polysaccharides with different ionic charge on the rheological, microstructural and textural properties of acid milk gels. Food Res Int 72:62–73. doi:http://dx.doi.org/10.1016/j.foodres.2015.02.009

    Article  CAS  Google Scholar 

  • Pang Z, Deeth H, Sharma R, Bansal N (2015b) Effect of addition of gelatin on the rheological and microstructural properties of acid milk protein gels. Food Hydrocoll 43:340–351. doi:http://dx.doi.org/10.1016/j.foodhyd.2014.06.005

    Article  CAS  Google Scholar 

  • Partanen R, Autio K, Myllärinen P, Lille M, Buchert J, Forssell P (2008) Effect of transglutaminase on structure and syneresis of neutral and acidic sodium caseinate gels. Int Dairy J 18(4):414–421

    Article  CAS  Google Scholar 

  • Peng Y, Horne DS, Lucey JA (2009) Impact of preacidification of milk and fermentation time on the properties of yogurt. J Dairy Sci 92(7):2977–2990. doi:10.3168/jds.2008-1221

    Article  CAS  Google Scholar 

  • Peng Y, Horne DS, Lucey JA (2010) Physical properties of acid milk gels prepared at 37°C up to gelation but at different incubation temperatures for the remainder of fermentation. J Dairy Sci 93(5):1910–1917

    Article  CAS  Google Scholar 

  • Phadungath C (2005) The mechanism and properties of acid-coagulated milk gels. Songklanakarin J Sci Technol 27(2):433–448

    CAS  Google Scholar 

  • Prasanna PHP, Grandison AS, Charalampopoulos D (2013) Microbiological, chemical and rheological properties of low fat set yoghurt produced with exopolysaccharide (EPS) producing Bifidobacterium strains. Food Res Int 51(1):15–22. doi:http://dx.doi.org/10.1016/j.foodres.2012.11.016

    Article  CAS  Google Scholar 

  • Pugnaloni LA, Matia-Merino L, Dickinson E (2005) Microstructure of acid-induced caseinate gels containing sucrose: quantification from confocal microscopy and image analysis. Coll Surfaces B Biointerfaces 42(3–4):211–217. doi:http://dx.doi.org/10.1016/j.colsurfb.2005.03.002

    Article  CAS  Google Scholar 

  • Riener J, Noci F, Cronin DA, Morgan DJ, Lyng JG (2009) The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation. Food Chem 114(3):905–911. doi:http://dx.doi.org/10.1016/j.foodchem.2008.10.037

    Article  CAS  Google Scholar 

  • Rincón Cardona JA, Iriart HC, Herrera ML (2013) Applications of confocal laser scanning microscopy (CLSM) in foods. In: Lagali N (ed) Confocal laser microscopy—principles and applications in medicine, biology, and the food sciences. InTech. doi:10.5772/55653

    Google Scholar 

  • Rizzieri R, Baker FS, Donald AM (2003) A tensometer to study strain deformation and failure behavior of hydrated systems via in situ environmental scanning electron microscopy. Rev Scient Instrum 74(10):4423–4428. doi:http://dx.doi.org/10.1063/1.1611618

    Article  CAS  Google Scholar 

  • Roefs SPFM, Van Vliet T (1990) Structure of acid casein gels 2. Dynamic measurements and type of interaction forces. Coll Surf A 50(c):161–175. (Physicochemical and Engineering Aspects)

    Article  CAS  Google Scholar 

  • Rohart A, Michon C (2013) Designing microstructure into acid skim milk/guar gum gels. Paper presented at the InsideFood Symposium, 9–12 April, Leuven, Belgium,

    Google Scholar 

  • Rohart A, Michon C (2014) Designing microstructure into xanthan gum-enriched acid milk gels. Innov Sci Emerg Technol 25:53–57. doi:http://dx.doi.org/10.1016/j.ifset.2014.01.002

    Article  CAS  Google Scholar 

  • Rovira S, Lopez MB, Ferrandini E, Laencina J (2011) Hot topic: microstructure quantification by scanning electron microscopy and image analysis of goat cheese curd. J Dairy Sci 94(3):1091–1097

    Article  CAS  Google Scholar 

  • Sanchez C, Zuniga-Lopez R, Schmitt C, Despond S, Hardy J (2000) Microstructure of acid–induced skim milk–locust bean gum–xanthan gels. Int Dairy J 10(3):199–212. doi:http://dx.doi.org/10.1016/S0958-6946(00)00030-3

    Article  CAS  Google Scholar 

  • Sandoval-Castilla O, Lobato-Calleros C, Aguirre-Mandujano E, Vernon-Carter EJ (2004) Microstructure and texture of yogurt as influenced by fat replacers. Int Dairy J 14(2):151–159. doi:http://dx.doi.org/10.1016/S0958-6946(03)00166-3

    Article  CAS  Google Scholar 

  • Sawyer L, Kontopidis G (2000) The core lipocalin, bovine β-lactoglobulin. Biochimica et Biophysica Acta (BBA). Protein Struct Mol Enzymol 1482(1–2):136–148. doi:10.1016/s0167-4838(00)00160-6

    Google Scholar 

  • Siefarth C, Tran T, Mittermaier P, Pfeiffer T, Buettner A (2014) Effect of radio frequency heating on yoghurt, II: microstructure and texture. Foods 3(2):369–393

    Article  Google Scholar 

  • Silva JVC, Legland D, Cauty C, Kolotuev I, Floury J (2015) Characterization of the microstructure of dairy systems using automated image analysis. Food Hydrocoll 44:360–371. doi:http://dx.doi.org/10.1016/j.foodhyd.2014.09.028

    Article  CAS  Google Scholar 

  • Singh M, Kim S (2009) Yogurt fermentation in the presence of starch–lipid composite. J Food Sci 74(2):85–89. doi:10.1111/j.1750-3841.2008.01028.x

    Article  CAS  Google Scholar 

  • Smith AK, Campbell BE (2007) Microstructure of milk components. In: Tamime AY (ed) Structure of dairy products. Blackwell Publishing, Oxford, pp 59–71

    Chapter  Google Scholar 

  • Soodam K, Ong L, Powell I, Kentish S, Gras S (2014) The effect of milk protein concentration on the microstructure and textural properties of full fat cheddar cheese during ripening. Food Bioprocess Technol 7(10):2912–2922. doi:10.1007/s11947-014-1342-6

    Google Scholar 

  • Stokes DJ (2013) Environmental scanning electron microscopy (ESEM): principles and applications to food microstructures. In: Morris VJ, Groves K (eds) Food microstructures: microscopy, measurement and modelling. Woodhead Publishing, Cambridge, pp 3–26

    Chapter  Google Scholar 

  • Tamime AY, Hassan A, Farnworth E, Toba T (2007) Structure of fermented milks. In: Tamime AY (ed) Structure of dairy products. Blackwell Publishing, Oxford, pp 134–169

    Chapter  Google Scholar 

  • Tamime AY, Saarela M, Korslund Sondergaard K, Mistry VV, Shah NP (2005) Production and maintenance of viability of probiotic micro-organisms in dairy products. In: Tamime AY (ed) Probiotic dairy products. Blackwell Publishing, Oxford, pp 39–72

    Google Scholar 

  • Torres IC, Amigo Rubio JM, Ipsen R (2012) Using fractal image analysis to characterize microstructure of low-fat stirred yoghurt manufactured with microparticulated whey protein. J Food Eng 109(4):721–729. doi:http://dx.doi.org/10.1016/j.jfoodeng.2011.11.016

    Article  CAS  Google Scholar 

  • Trejo R, Corzo-Martínez M, Wilkinson S, Higginbotham K, Harte FM (2014) Effect of a low temperature step during fermentation on the physico-chemical properties of fat-free yogurt. Int Dairy J 36(1):14–20. doi:http://dx.doi.org/10.1016/j.idairyj.2013.12.003

    Article  CAS  Google Scholar 

  • Trejo R, Dokland T, Jurat-Fuentes J, Harte F (2011) Cryo-transmission electron tomography of native casein micelles from bovine milk. J Dairy Sci 94(12):5770–5775. doi:http://dx.doi.org/10.3168/jds.2011–4368

    Article  CAS  Google Scholar 

  • Tromp RH, van de Velde F, van Riel J, Paques M (2001) Confocal scanning light microscopy (CSLM) on mixtures of gelatine and polysaccharides. Food Res Int 34(10):931–938. doi:http://dx.doi.org/10.1016/S0963-9969(01)00117-X

    Article  CAS  Google Scholar 

  • Tromp RH, Nicolas Y, Van de Velde F, Paques M (2003) Confocal scanning laser microscopy (CSLM) for monitoring food composition. In: Tothill IE (ed) Rapid and on-line instrumentation for food quality assurance. Woodhead Publishing Limited, Cambridge, pp 306–323

    Google Scholar 

  • Tromp RH, de Kruif CG, van Eijk M, Rolin C (2004) On the mechanism of stabilisation of acidified milk drinks by pectin. Food Hydrocoll 18(4):565–572. doi:http://dx.doi.org/10.1016/j.foodhyd.2003.09.005

    Article  CAS  Google Scholar 

  • Tuinier R, Rolin C, de Kruif CG (2002) Electrosorption of pectin onto casein micelles. Biomacromolecules 3(3):632–638

    Article  CAS  Google Scholar 

  • Walstra P (1995) Physical chemistry of milkfat globules. In: Fox PF (ed) Developments in dairy chemistry. Chapman & Hall, London, pp 131–173

    Google Scholar 

  • Walstra P, van Dijk HJM, Geurts TJ (1985) The syneresis of curd. 1. General considerations and literature review. Neth Milk Dairy J 39:209–246

    Google Scholar 

  • Van Buggenhout S, Christiaens S, Moelants K, Ribas-Agusti A, Van Loey A, Hendrickx M (2013) The functionality of plant-based food systems as affected by process-induced changes in cell wall polysaccharides. In: InsideFood Symposium, 9–12 April 2013, Leuven, Belgium

    Google Scholar 

  • van de Velde F, Weinbreck F, Edelman MW, van der Linden E, Tromp RH (2003) Visualisation of biopolymer mixtures using confocal scanning laser microscopy (CSLM) and covalent labelling techniques. Coll Surf B Biointerfaces 31(1–4):159–168. doi:http://dx.doi.org/10.1016/S0927-7765(03)00135-8

    Article  CAS  Google Scholar 

  • van den Berg L, Rosenberg Y, van Boekel MAJS, Rosenberg M, van de Velde F (2009) Microstructural features of composite whey protein/polysaccharide gels characterized at different length scales. Food Hydrocoll 23(5):1288–1298. doi:http://dx.doi.org/10.1016/j.foodhyd.2008.10.013

    Article  CAS  Google Scholar 

  • van Marle ME, van den Ende D, de Kruif CG, Mellema J (1999) Steady-shear viscosity of stirred yogurts with varying ropiness. J Rheol 43(6):1643–1662. doi:http://dx.doi.org/10.1122/1.551065

    Article  Google Scholar 

  • Van Vliet T, Lakemond CMM, Visschers RW (2004) Rheology and structure of milk protein gels. Curr Opin Coll Interface Sci 9(5):298–304. doi:10.1016/j.cocis.2004.09.002

    Article  CAS  Google Scholar 

  • van Vliet T, Walstra P (1994) Water in casein gels; how to get it out or keep it in. J Food Eng 22(1–4):75–88. doi:10.1016/0260-8774(94)90026-4

    Article  Google Scholar 

  • Vargas M, Cháfer M, Albors A, Chiralt A, González-Martínez C (2008) Physicochemical and sensory characteristics of yoghurt produced from mixtures of cows’ and goats’ milk. Int Dairy J 18(12):1146–1152. doi:http://dx.doi.org/10.1016/j.idairyj.2008.06.007

    Article  CAS  Google Scholar 

  • Willats WG, Orfila C, Limberg G, Buchholt HC, van Alebeek GJ, Voragen AG, Marcus SE, Christensen TM, Mikkelsen JD, Murray BS, Knox JP (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276(22):19404–19413

    Article  CAS  Google Scholar 

  • Yahimi Yazdi S, Corredig M, Dalgleish DG (2014) Studying the structure of β-casein-depleted bovine casein micelles using electron microscopy and fluorescent polyphenols. Food Hydrocoll 42:171–177. doi:http://dx.doi.org/10.1016/j.foodhyd.2014.03.022. (Part 1)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilek Ercili-Cura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ercili-Cura, D. (2016). Imaging of Fermented Dairy Products. In: Sozer, N. (eds) Imaging Technologies and Data Processing for Food Engineers. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-24735-9_4

Download citation

Publish with us

Policies and ethics