Skip to main content

Chemical Features of Food Packaging Materials

  • Chapter
  • First Online:
Food Packaging Materials

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSCHEFO))

  • 3252 Accesses

Abstract

Chemistry is not only important in the production of packaging materials. Important reactions may take place or must occur during practical uses, when packages are filled with food and beverages and, after their use, addressed to recycling processes. For various reasons, these chemical changes can be very important; as a result, the most relevant ones of these modifications—corrosion, cracking, fractures, weathering, etc.—should be shortly discussed. Corrosion is usually referred to metals and, more rarely, to concrete, polymers and glasses. This complex phenomenon depends on different variables. Also, biodegradation and compostability have to be discussed when speaking of food packaging materials. Chemical resistance can be indirectly described in terms of stability to oxidation, resistance to corrosion and other performances. In addition, peculiar abuse tests are available when speaking of the resistance of materials under the combined effects of a stress and aggressive environmental. Consequently, modifications of weight, dimensions, mechanical properties and visual appearance are evaluated in order to express a rate of chemical resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ESC:

Environmental stress cracking

M:

Metal

MW:

Molecular weight

TFS:

Tin-free steel

References

  • Alexander M (1965) Biodegradation: problems of molecular recalcitrance and microbial fallibility. Adv Appl Microbiol 7:35–80. doi:10.1016/S0065-2164(08)70383-6

    Article  CAS  Google Scholar 

  • ASTM (2014) Active Standard ASTM D543-14—Standard practices for evaluating the resistance of plastics to chemical reagents, ASTM Volume 08.01 Plastics (I): C1147 D3159. ASTM International, West Conshohocken. doi:10.1520/D0543-14

  • Charbonneau JE (1997) Recent case histories of food product-metal container interactions using scanning electron microscopy-X-ray microanalysis. Scan 19(7):512–518. doi:10.1002/sca.4950190710

    Article  CAS  Google Scholar 

  • Clark DE, Pantano Jr CG, Hench LL (1979) Corrosion of glass. Glass Industry, Books for Industry and The Glass Industry, Division of Magazines for Industry, Inc. New York

    Google Scholar 

  • Ezrin M, Lavigne G (2007) Unexpected and unusual failures of polymeric materials. Eng Fail Anal 14(6):1153–1165. doi:10.1016/j.engfailanal.2006.11.048

    Article  Google Scholar 

  • Harlow D, Wei R (1998) A probability model for the growth of corrosion pits in aluminum alloys induced by constituent particles. Eng Fract Mech 59(3):305–325. doi:10.1016/S0013-7944(97)00127-6

    Article  Google Scholar 

  • Harlow DG, Wei RP (2002) A critical comparison between mechanistically based probability and statistically based modeling for materials aging. Mater Sci Eng A 323(1–2):278–284. doi:10.1016/S0921-5093(01)01370-3

    Article  Google Scholar 

  • Horie K, Barón M, Fox RB, He J, Hess M, Kahovec J, Kitayama T, Kubisa P, Maréchal E, Mormann W, Stepto RFT, Tabak D, Vohlídal J, Wilks ES, Work WJ (2004) Definitions of terms relating to reactions of polymers and to functional polymeric materials (IUPAC Recommendations 2003). Pure Appl Chem 76(4):889–906. doi:10.1351/pac200476040889

    Article  CAS  Google Scholar 

  • Kijchavengkul T, Auras R (2008) Compostability of polymers. Polym Int 57(6):793–804. doi:10.1002/pi.2420

    Article  CAS  Google Scholar 

  • Kumar CG, Anand S (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42(1–2):9–27. doi:10.1016/S0168-1605(98)00060-9

    Article  CAS  Google Scholar 

  • Little BJ, Mansfeld FB, Arps PJ, Earthman JC (2007) Microbiologically influenced corrosion. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi:10.1002/9783527610426.bard040603

  • Morita J, Yoshida M (1994) Effects of free tin on filiform corrosion behavior of lightly tin-coated steel. Corros 50(1):11–19. doi:10.5006/1.3293489

    Article  CAS  Google Scholar 

  • Pardo A, Otero E, Merino M, López M, Utrilla M, Moreno F (2000) Influence of pH and chloride concentration on the pitting and crevice corrosion behavior of high-alloy stainless steels. Corros 56(4):411–418. doi:10.5006/1.3280545

    Article  CAS  Google Scholar 

  • Piergiovanni L, Fava P, Ciappellano S, Testolin G (1990) Modelling acidic corrosion of aluminium foil in contact with foods. Packag Technol Sci 3(4):195–201. doi:10.1002/pts.2770030404

    Article  Google Scholar 

  • Robertson GL (1993) Food packaging: principles and practice. Marcel Dekker, New York, pp 173–231

    Google Scholar 

  • Turner T (1991) Packaging of heat preserved foods in metal containers. In: Rees JAG, Bettison J (eds) Processing and packaging heat preserved foods. Springer, New York, p 92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Piergiovanni .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Piergiovanni, L., Limbo, S. (2016). Chemical Features of Food Packaging Materials. In: Food Packaging Materials. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-24732-8_7

Download citation

Publish with us

Policies and ethics