Skip to main content

Materials Combinations

  • Chapter
  • First Online:
Food Packaging Materials

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSCHEFO))

  • 3160 Accesses

Abstract

A single material is used rarely alone in the manufacturing of final packages, in particular when speaking of flexible packaging. Various materials can be used in order to assemble a structure with interesting properties (logistic advantages, ameliorated shelf lives of packaged products, opportunities for recycling and environmental impacts). This reflection should address more attention to the possible development of high-performing packages which can extend shelf lives and better protect foods. The most important technologies used to arrange together different materials in order to achieve more performing packages—multilayer structures, composites, polymer blends and alloys—are shortly described in this chapter with emphasis on chemical aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

All-cellulose composite

α:

Aspect ratio

CNCs:

Cellulose nanocrystals

EMAA:

Ethylene-methacrylic acid

EVA:

Ethylene vinyl acetate copolymer

EVOH:

Ethylene vinyl alcohol

GWP:

Global warming potential

HDPE:

High-density polyethylene

HIPS:

High-impact polystyrene

IUPAC:

International Union of Pure and Applied Chemistry

LDPE:

Low-density polyethylene

MEK:

Methyl ethyl ketone

OPA:

Oriented polyamide

OPP:

Oriented polypropylene

PO2 :

Oxygen permeability

PA:

Polyamide

PET:

Polyethylene Terephthalate

PA/MXD 6:

Poly(m-xylyleneadipamide)PA/MXD 6

PP:

Polypropylene

PU:

Polyurethane

PVOH:

Polyvinyl alcohol

PVDC:

Polyvinylidene chloride

PAA:

Primary aromatic amine

A/V:

Surface area/volume

VOC:

Volatile organic compound

References

  • Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. Wiley, New York

    Google Scholar 

  • Alemán JV, Chadwick AV, He J, Hess M, Horie K, Jones RG, Kratochvíl P, Meisel I, Mita I, Moad G, Penczek S, Stepto RFT (2007) Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl Chem 79(10):1801–1829. doi:10.1351/pac200779101801

    Article  Google Scholar 

  • Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75(1):R43–R49. doi:10.1111/j.1750-3841.2009.01456.x

    Article  CAS  Google Scholar 

  • Bishop CA, Mount EM III (2010) Vacuum metallizing for flexible packaging. In: Wagner JR (ed) Multilayer flexible packaging. William Andrew Publishing, Boston

    Google Scholar 

  • De Bruyn K, Van Stappen M, De Deurwaerder H, Rouxhet L, Celis JP (2003) Study of pretreatment methods for vacuum metallization of plastics. Surf Coat Technol 163–164:710–715. doi:http://dx.doi.org/10.1016/S0257-8972(02)00684-9

    Google Scholar 

  • de Fátima Poças M, Hogg T (2007) Exposure assessment of chemicals from packaging materials in foods: a review. Trends Food Sci Technol 18(4):219–230. doi:http://dx.doi.org/10.1016/j.tifs.2006.12.008

    Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33. doi:10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  • European Commission (2011) Commission Recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Union L275:38–40. http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32011H0696. Accessed 18 May 2015

  • Fabra MJ, Busolo MA, Lopez-Rubio A, Lagaron JM (2013) Nanostructured biolayers in food packaging. Trends Food Sci Technol 31(1):79–87. doi:http://dx.doi.org/10.1016/j.tifs.2013.01.004

    Google Scholar 

  • Farris S, Piergiovanni L (2012) Emerging coating technologies for food and beverage packaging materials. In: Yam KL, Lee DS (eds) Emerging food packaging technologies. Woodhead Publishing Ltd, England

    Google Scholar 

  • Farris S, Pozzoli S, Biagioni P, Duó L, Mancinelli S, Piergiovanni L (2010) The fundamentals of flame treatment for the surface activation of polyolefin polymers—a review. Polym 51(16):3591–3605. doi:10.1016/j.polymer.2010.05.036

    Article  CAS  Google Scholar 

  • Farris S, Introzzi L, Fuentes-Alventosa JM, Santo N, Rocca R, Piergiovanni L (2012) Self-assembled pullulan-silica oxygen barrier hybrid coatings for food packaging applications. J Agric Food Chem 60(3):782–790. doi:10.1021/Jf204033d

    Article  CAS  Google Scholar 

  • Finlayson K (1994) Advances in polymer blends and alloys technology, vol V. Technomic Publishing Company Inc, Lancaster

    Google Scholar 

  • Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C 23(6):763–772. doi:10.1016/j.msec.2003.09.148

    Article  Google Scholar 

  • Franz R, Störmer A (2008) Migration of plastic constituents. In: Piringer OG, Baner AL (eds) Plastic packaging. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi:10.1002/9783527621422.ch11

  • Franz R, Kluge S, Lindner A, Piringer O (1990) Cause of catty odour formation in packaged food. Packag Technol Sci 3(2):89–95. doi:10.1002/pts.2770030206

    Article  Google Scholar 

  • Gacitua W, Ballerini A, Zhang J (2005) Polymer nanocomposites: synthetic and natural fillers a review. Maderas Cienc Tecnol 7(3):159–178. doi:10.4067/S0718-221X2005000300002

    Article  Google Scholar 

  • Grönman K, Soukka R, Järvi-Kääriäinen T, Katajajuuri J-M, Kuisma M, Koivupuro H-K, Ollila M, Pitkänen M, Miettinen O, Silvenius F, Thun R, Wessman H, Linnanen L (2013) Framework for sustainable food packaging design. Packag Technol Sci 26(4):187–200. doi:10.1002/pts.1971

    Article  Google Scholar 

  • Gutoff EB, Cohen ED (2010) Water- and solvent-based coating technology. In: Wagner JR (ed) Multilayer Flexible Packaging. William Andrew Publishing, Boston

    Google Scholar 

  • Jordan-Sweet JL (1990) Using near-edge soft X-ray absorption spectroscopy to study organic polymers and metal-polymer interactions. In: Sacher E, Pireaux JJ, Kowalczyk SP (eds) Metallization of polymers, ACS Symp Ser, vol 440, pp 242–264. American Chemical Society, Columbus. doi:10.1021/bk-1990-0440.ch018

    Google Scholar 

  • Li F, Biagioni P, Bollani M, Maccagnan A, Piergiovanni L (2013) Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellul 20(5):2491–2504. doi:10.1007/s10570-013-0015-3

    Article  CAS  Google Scholar 

  • Li F, Mascheroni E, Piergiovanni L (2015) The potential of nanocellulose in the packaging field: a review. Packag Technol Sci 28(6):475–564. doi:10.1002/pts.2121

    Article  Google Scholar 

  • Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC (2003) Self-reinforced melt processable composites of sisal. Compos Sci Technol 63(2):177–186. doi:10.1016/S0266-3538(02)00204-X

    Article  CAS  Google Scholar 

  • Mark PA (1990) Reactions of metal atoms with monomers and polymers. In: Sacher E, Pireaux JJ, Kowalczyk SP (eds) Metallization of polymers, ACS Symp Ser, vol 440, pp 242–264. American Chemical Society, Columbus. doi:10.1021/bk-1990-0440.ch018

    Google Scholar 

  • Mascheroni E, Chalier P, Gontard N, Gastaldi E (2010) Designing of a wheat gluten/montmorillonite based system as carvacrol carrier: rheological and structural properties. Food Hydrocoll 24(4):406–413. doi:10.1016/j.foodhyd.2009.11.007

    Article  CAS  Google Scholar 

  • McCrum NG, Buckley CP, Bucknall CB (1997) Principles of Polymer Engineering, 2nd edn. Oxford University Press, New York, pp 242–245

    Google Scholar 

  • Miao C, Hamad W (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellul 20(5):2221–2262. doi:10.1007/s10570-013-0007-3

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  • Mount E III (2010) Coextrusion equipment for multilayer flat films and sheets. In: Wagner JR (ed) Multilayer flexible packaging. William Andrew Publishing, Boston, pp 75–95

    Chapter  Google Scholar 

  • Reig CS, Lopez AD, Ramos MH, Ballester VAC (2014) Nanomaterials: a map for their selection in food packaging applications. Packag Technol Sci 27(11):839–866. doi:10.1002/pts.2076

    Article  CAS  Google Scholar 

  • Silvenius F, Grönman K, Katajajuuri J-M, Soukka R, Koivupuro H-K, Virtanen Y (2014) The role of household food waste in comparing environmental impacts of packaging alternatives. Packag Technol Sci 27(4):277–292. doi:10.1002/pts.2032

    Article  Google Scholar 

  • Sun C, Zhang D, Wadsworth LC (1999) Corona treatment of polyolefin films—a review. Adv Polymer Technol 18(2):171–180. doi:10.1002/(SICI)1098-2329(199922)18:2<171:AID-ADV6>3.0.CO;2-8

    Article  CAS  Google Scholar 

  • Trier X, Okholm B, Foverskov A, Binderup ML, Petersen JH (2010) Primary aromatic amines (PAAs) in black nylon and other food-contact materials, 2004–2009. Food Addit Contam Part A 27(9):1325–1335. doi:10.1080/19440049.2010.487500

    Article  CAS  Google Scholar 

  • Utracki LA, Wilkie CA (2014) Polymer blends handbook. Springer Reference. Springer Science+Business Media B.V, Dordrecht

    Google Scholar 

  • Uysal Ünalan IU, Wan C, Trabattoni S, Piergiovanni L, Farris S (2015) Polysaccharide-assisted rapid exfoliation of graphite platelets into high quality water-dispersible graphene sheets. RSC Adv 5(34):26482–26490. doi:10.1039/C4RA16947F

    Article  Google Scholar 

  • Wagner JR Jr (2010) Blown film, cast film and lamination processes. In: Wagner JR (ed) Multilayer flexible packaging. William Andrew Publishing, Boston

    Google Scholar 

  • Walter D (2013) Primary particles–agglomerates–aggregates. Nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 9–24

    Chapter  Google Scholar 

  • Wikström F, Williams H (2010) Potential environmental gains from reducing food losses through development of new packaging—a life-cycle model. Packag Technol Sci 23(7):403–411. doi:10.1002/pts.906

    Article  Google Scholar 

  • Wolf AR (2004) Surface activation systems for optimizing adhesion to polymers. In: Conference Proceedings of the ANTEC Conference 2004. Society of Plastics Engineers, Bethel

    Google Scholar 

  • Xanthos M (2005) Polymers and polymer composites. In: Xanthos M (ed) Functional fillers for plastics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–16

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Piergiovanni .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Piergiovanni, L., Limbo, S. (2016). Materials Combinations. In: Food Packaging Materials. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-24732-8_6

Download citation

Publish with us

Policies and ethics