Shape Compaction

  • Honghua LiEmail author
  • Hao Zhang
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


We cover and discuss techniques that are designed for compaction of shape representations or shape configurations. The goal of compaction is to reduce storage space, a fundamental problem in many application domains. We consider compaction both at the representation level (i.e., digital storage) and in physical domains (i.e., physical storage). Shape representation compaction focuses on reducing the memory space allocated for storing the shape geometry data, whilst shape compaction techniques in the physical domain reduce the physical space occupied by shape configuration. We use the term shape configuration to refer to how a shape, real or conceptual, is physically modeled (e.g., design and composition of its parts) and spatially arranged (e.g., shape parts positioning and possibly in relation to other shapes). In this paper we briefly cover the representation compaction techniques whilst placing our focus on the less explored realm of shape compaction approaches on physical configurations.


Shape Representation Input Shape Curve Skeleton Statistical Redundancy Shape Compaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alliez, P., Gotsman, C.: Recent advances in compression of 3d meshes. In: Advances in Multiresolution for Geometric Modelling, pp. 3–26. Springer, Berlin/London (2005)Google Scholar
  2. 2.
    Au, O.K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., Lee, T.-Y.: Skeleton extraction by mesh contraction. ACM Trans. Graph. 27 (3), 44 (2008)CrossRefGoogle Scholar
  3. 3.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. M.I.T. Press, Cambridge (1967)Google Scholar
  4. 4.
    Cagan, J., Shimada, K., Yin, S.: A survey of computational approaches to three-dimensional layout problems. Comput. Aided Des. 34, 597–611 (2002)CrossRefGoogle Scholar
  5. 5.
    Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H.S., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S.: Where do people draw lines? ACM Trans. Graph. (Proc. SIGGRAPH) 27 (3), 88 (2008)Google Scholar
  6. 6.
    Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S., Singh, M.: How well do line drawings depict shape? ACM Trans. Graph. 28 (3), 28 (2009). Proc. SIGGRAPHGoogle Scholar
  7. 7.
    Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13 (3), 530–548 (2007)CrossRefGoogle Scholar
  8. 8.
    De Goes, F., Goldenstein, S., Desbrun, M., Velho, L.: Technical section: exoskeleton: curve network abstraction for 3d shapes. Comput. Graph. 35 (1), 112–121 (2011)CrossRefGoogle Scholar
  9. 9.
    Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press, Cambridge/New York (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Dyckhoff, H.: A typology of cutting and packing problems. Eur. J. Oper. Res. 44 (2), 145–159 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Egeblad, J., Nielsen, B.K., Odgaard, A.: Fast neighborhood search for two- and three-dimensional nesting problems. Eur. J. Oper. Res. 183 (3), 1249–1266 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fiell, C., Fiell, P.: 1000 Chairs. Taschen, New York (2000)Google Scholar
  13. 13.
    Gal, R., Sorkine, O., Popa, T., Sheffer, A., Cohen-Or, D.: 3D collage: expressive non-realistic modeling. In: NPAR: Proceedings of the 5th International Symposium on Non-Photorealistic Animation and Rendering, San Diego, pp. 7–14 (2007)Google Scholar
  14. 14.
    Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithms. In: Multiresolution Surface Modeling Course SIGGRAPH’97, Los Angeles (1997)Google Scholar
  15. 15.
    Hildebrand, K., Bickel, B., Alexa, M.: crdbrd: shape fabrication by sliding planar slices. Comput. Graph. Forum 31, 1583–592 (2012)Google Scholar
  16. 16.
    Hopper, E, Turton, B.C.H.: A review of the application ofmeta-heuristic algorithms to 2d strip packing problems. Artif. Intell. Rev. 16 (4), 257–300 (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hu, R., Li, H., Zhang, H., Cohen-Or, D.: Approximate pyramidal shape decomposition. In: Proceedings of SIGGRAPH, Vancouver (2014)Google Scholar
  18. 18.
    Huang, H., Wu, S., Cohen-Or, D., Gong, M., Zhang, H., Li, G., Chen, B.: L1-medial skeleton of point cloud. ACM Trans. Graph. 32, 65:1–65:8 (2013)Google Scholar
  19. 19.
    Huang, H., Zhang, L., Zhang, H.-C.: Arcimboldo-like collage using internet images. ACM Trans. Graph. 30 (155), 1–8 (2011)Google Scholar
  20. 20.
    Jackson, P.: Folding Techniques for Designers: From Sheet to Form. Laurence King Publishing, London (2011)Google Scholar
  21. 21.
    Kaplan, C.S, Salesin, D.H.: Escherization. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, SIGGRAPH’00, New Orleans, pp. 499–510. ACM Press/Addison-Wesley Publishing Co. (2000)Google Scholar
  22. 22.
    Leung, S.C., Lin, Y., Zhang, D.: Extended local search algorithm based on nonlinear programming for two-dimensional irregular strip packing problem. Comput. Oper. Res. 39 (3), 678–686 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Li, H., Alhashim, I., Zhang, H., Shamir, A., Cohen-Or, D.: Stackabilization. ACM Trans. Graph. 31 (6), 158:1–158:9 (2012)Google Scholar
  24. 24.
    Li, X.-Y., Ju, T., Gu, Y., Hu, S.-M.: A geometric study of v-style pop-ups: theories and algorithms. ACM Trans. Graph. 30 (4), 98:1–10 (2011)Google Scholar
  25. 25.
    Li, X.-Y., Shen, C.-H., Huang, S.-S., Ju, T., Hu, S.-M.: Popup: automatic paper architectures from 3d models. ACM Trans. Graph. 29 (4), 111:1–9 (2010)Google Scholar
  26. 26.
    Li, Z.: Compaction algorithms for non-convex polygons and their applications. Ph.D. thesis, Harvard University (1994)Google Scholar
  27. 27.
    Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: a survey. Eur. J. Oper. Res. 141 (2), 241–252 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Luebke, D., Watson, B., Cohen, J.D., Reddy, M., Varshney, A.: Level of Detail for 3D Graphics. Elsevier Science Inc., New York (2002)Google Scholar
  29. 29.
    Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl. 21 (3), 24–35 (2001)CrossRefGoogle Scholar
  30. 30.
    Martinet, A.: Structuring 3D geometry based on symmetry and instancing information. Ph.D. thesis, INP Grenoble (2007)Google Scholar
  31. 31.
    McArthur, M., Lang, R.J.: Folding Paper: The Infinite Possibilities of Origami. Turtle Publishing, Tokyo (2013)Google Scholar
  32. 32.
    McCrae, J., Singh, K., Mitra, N.J.: Slices: a shape-proxy based on planar sections. ACM Trans. Graph. 30 (6), 168:1–168:12 (2011)Google Scholar
  33. 33.
    Mehra, R., Zhou, Q., Long, J., Sheffer, A., Gooch, A., Mitra, N.J.: Abstraction of man-made shapes. ACM Trans. Graph. 28 (5), 137:1–137:10 (2009)Google Scholar
  34. 34.
    Mitani, J., Suzuki, H.: Computer aided design for origamic architecture models with polygonal representation. In: Proceedings of Computer Graphics International, Crete, pp. 93–99 (2004)Google Scholar
  35. 35.
    Mitani, J., Suzuki, H., Uno, H.: Computer aided design for origamic architecture models with voxel data structure. Trans. Inf. Process. Soc. Jpn. 44 (5), 1372–1379 (2003)Google Scholar
  36. 36.
    Mitra, N.J., Wand, M., Zhang, H., Cohen-Or, D., Bokeloh, M.: Structure-aware shape processing. In: EUROGRAPHICS State-of-the-art Report, Girona (2013)CrossRefGoogle Scholar
  37. 37.
    Mollerup, P.: Collapsible: The Genius of Space-Saving Design. Chronicle, San Francisco (2001)Google Scholar
  38. 38.
    Nielsen, B.K., Odgaard, A.: Fast neighborhood search for the nesting problem. Technical Report 03/03, Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen Ø (2003)Google Scholar
  39. 39.
    Pauly, M., Mitra, N.J., Wallner, J., Pottmann, H., Guibas, L.: Discovering structural regularity in 3D geometry. ACM Trans. Graph. 27 (3), 43:1–11 (2008)Google Scholar
  40. 40.
    Peng, J., Kim, C.-S., Jay Kuo, C.C.: Technologies for 3d mesh compression: a survey. J. Vis. Commun. Image Represent. 16 (6), 688–733 (2005)CrossRefGoogle Scholar
  41. 41.
    Ruiz Jr., C.R., Le, S.N., Yu, J., Low, K.-L.: Multi-style paper pop-up designs from 3d models. Comput. Graph. Forum (Special Issue of Eurographics) 33 (2), 487-496 (2014)Google Scholar
  42. 42.
    Schattschneider, D., Escher, M.C.: Visions of Symmetry. W.H. Freeman, New York (1990)Google Scholar
  43. 43.
    Simari, P., Kalogerakis, E., Singh, K.: Folding meshes: hierarchical mesh segmentation based on planar symmetry. In: Symposium on Geometry Processing, Cagliari, pp. 111–119 (2006)Google Scholar
  44. 44.
    Stoyan, Y., Romanova, T.: Mathematical models of placement optimisation: two- and three-dimensional problems and applications. In: Fasano, G., Pintér, J.D. (eds.) Modeling and Optimization in Space Engineering. Springer, New York (2013)Google Scholar
  45. 45.
    Tagliasacchi, A., Alhashim, I., Olson, M., Zhang, H.: Mean curvature skeletons. Comput. Graph. Forum 31 (5), 1735–1744 (2012)CrossRefGoogle Scholar
  46. 46.
    Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point cloud. ACM Trans. Graph. 28 (3): 71, 9 (2009)Google Scholar
  47. 47.
    Theobalt, C., Rössl, C., de Aguiar, E., Seidel, H.-P.: Animation collage. In: Symposium on Computer Animation, San Diego, pp. 271–280. Eurographics (2007)Google Scholar
  48. 48.
    Timmerman, M.: Optimization methods for nesting problems. Master’s thesis, University West (2013)Google Scholar
  49. 49.
    van Lemmen, H.: Tiles: 1000 Years of Architectural Decoration. Harry N. Abrams, Inc., New York (1993)Google Scholar
  50. 50.
    Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., Xiong, Y.: Symmetry hierarchy of man-made objects. Comput. Graph. Forum (Special Issue of Eurographics) 30 (2), 287–296 (2011)Google Scholar
  51. 51.
    Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Operat. Res. 183 (3), 1109–1130 (2007)CrossRefzbMATHGoogle Scholar
  52. 52.
    Yin, S, Cagan, J.: An extended pattern search algorithm for three-dimensional component layout. ASME J. Mech. Des. 122 (1), 102–108 (2000)CrossRefGoogle Scholar
  53. 53.
    Yumer, M.E., Kara, L.B.: Co-abstraction of shape collections. ACM Trans. Graph. 31, 158:1–158:11 (2012). Proceedings of SIGGRAPH Asia 2012Google Scholar
  54. 54.
    Zhou, Y., Sueda, S., Matusik, W., Shamir, A.: Boxelization: folding 3d objects into boxes. ACM Trans. Graph. 33 (4), 71:1–71:8 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Simon Fraser UniversityBurnabyCanada

Personalised recommendations