Advertisement

A Comparison of Non-Lambertian Models for the Shape-from-Shading Problem

  • Silvia TozzaEmail author
  • Maurizio Falcone
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

In this paper we present in a unified approach Shape-from-Shading models under orthographic projection for non-Lambertian surfaces and compare them with the classical Lambertian model. Those non-Lambertian models have been proposed in the literature by various authors in order to take into account more realistic surfaces such as rough and specular surfaces. The advantage of our unified mathematical model is the possibility to easily modify a single differential model to various situations just changing some control parameters. Moreover, the numerical approximation we propose is valid for that general model and can be easily adapted to the real situation. Finally, we compare the models on some benchmarks including real and synthetic images.

Keywords

Orthographic Projection Specular Component Light Source Direction Oblique Case Lambertian Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The first author wishes to acknowledge the support obtained by Gruppo Nazionale per il Calcolo Scientifico (GNCS-INdAM).

References

  1. 1.
    Ahmed, A.H., Farag, A.A.: A new formulation for Shape from Shading for non-Lambertian surfaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New York, pp. 1817–1824 (2006)Google Scholar
  2. 2.
    Ahmed, A.H., Farag, A.A.: Shape from Shading under various imaging conditions. In: IEEE International Conference on Computer Vision and Pattern Recognition CVPR’07, Minneapolis, pp. X1–X8, June 2007Google Scholar
  3. 3.
    Bakshi, S., Yang, Y.-H.: Shape-from-Shading for non-Lambertian surfaces. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 130–134 (1994)Google Scholar
  4. 4.
    Barles, G.: Solutions de viscosité des equations de Hamilton-Jacobi. Springer (1994)Google Scholar
  5. 5.
    Biswas, S., Aggarwal, G., Chellappa, R.: Robust estimation of albedo for illumination-invariant matching and shape recovery. IEEE Trans. Pattern Anal. Mach. Intell. 31 (5), 884–899 (2009)CrossRefGoogle Scholar
  6. 6.
    Breuß, M., Cristiani, E., Durou, J.-D., Falcone, M., Vogel, O.: Perspective Shape from Shading: ambiguity analysis and numerical approximations. SIAM J. Imaging Sci. 5 (1), 311–342 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bruss, A.: The image irradiance equation: its solution and application. Technical report ai-tr-623, Massachusetts Institute of Technology, June 1981Google Scholar
  8. 8.
    Camilli, F., Falcone, M.: An approximation scheme for the maximal solution of the Shape-from-Shading model. In: Proceedings of the International Conference on Image Processing, vol. 1, pp. 49–52, Sept 1996Google Scholar
  9. 9.
    Camilli, F., Grüne, L.: Numerical approximation of the maximal solutions for a class of degenerate Hamilton-Jacobi equations. SIAM J. Numer. Anal. 38 (5), 1540–1560 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chambolle, A.: A uniqueness result in the theory of stereo vision: coupling Shape from Shading and Binocular information allows Unambiguous depth reconstruction. Annales de l’Istitute Henri Poincar 11 (1), 1–16 (1994)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Courteille, F., Crouzil, A., Durou, J.-D., Gurdjos, P.: Towards Shape from Shading under realistic photographic conditions. In: Proceedings of the of the 17th International Conference on Pattern Recognition, Cambridge, vol. 2, pp. 277–280 (2004)Google Scholar
  12. 12.
    Courteille, F., Crouzil, A., Durou, J.-D., Gurdjos, P.: Shape from shading for the digitization of curved documents. Mach. Vis. Appl. 18 (5), 301–316 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Cristiani, E., Falcone, M.: Fast semi-Lagrangian schemes for the eikonal equation and applications. SIAM J. Numer. Anal. 45 (5), 1979–2011 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Danielsson, P.: Euclidean distance mapping. Comput. Graph. Image Process. 14, 227–248 (1980)CrossRefGoogle Scholar
  15. 15.
    Durou, J.-D, Falcone, M., Sagona, M.: Numerical methods for Shape from Shading: a new survey with benchmarks. Comput. Vis. Image Underst. 109 (1), 22–43 (2008)CrossRefGoogle Scholar
  16. 16.
    Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations. SIAM, Philadelphia (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
    Falcone, M., Sagona, M., Seghini, A.: A scheme for the Shape-from-Shading model with “black shadows”. In: Brezzi, F., Buffa, A., Corsaro, S., Murli, A. (eds.) Numerical Mathematics and Advanced Applications – ENUMATH2001, pp. 503–512. Springer, Milano/New York (2003)CrossRefGoogle Scholar
  18. 18.
    Fassold, H., Danzl, R., Schindler, K., Bischof, H.: Reconstruction of archaeological finds using Shape from Stereo and Shape from Shading. In: Proceedings of the 9th Computer Vision Winter Workshop, Piran, pp. 21–30 (2004)Google Scholar
  19. 19.
    Favaro, P., Papadhimitri, T.: A closed-form solution to uncalibrated photometric stereo via diffuse maxima. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 821–828 (2012)Google Scholar
  20. 20.
    Grumpe, A., Belkhir, F., Wöhler, C.: Construction of lunar DEMs based on reflectance modelling. Adv Space Res 53 (12), 1735–1767 (2014)CrossRefGoogle Scholar
  21. 21.
    Helmsen, J., Puckett, E., Colella, P., Dorr, M.: Two new methods for simulating photolithography development in 3D. In: Optical Microlithography IX, vol. 2726, pp. 253–261. SPIE, Bellingham (1996)Google Scholar
  22. 22.
    Horn, B.K.P.: Shape from Shading: a method for obtaining the Shape of a smooth opaque object from one view. PhD thesis, Massachusetts Institute of Technology (1970)Google Scholar
  23. 23.
    Horn, B.K.P., Brooks, M.J.: The variational approach to Shape from Shading. Comput. Vis. Graph. Image Process. 33 (2), 174–208 (1986)CrossRefzbMATHGoogle Scholar
  24. 24.
    Horn, B.K.P., Brooks, M.J.: Shape from Shading. MIT, Cambridge (1989)zbMATHGoogle Scholar
  25. 25.
    Ju, y.-C., Breuß, M., Bruhn, A., Galliani, S.: Shape from Shading for rough surfaces: analysis of the Oren-Nayar model. In: Proceedings of the British Machine Vision Conference (BMVC), pp 104.1–104.11. BMVA Press, Durham (2012)Google Scholar
  26. 26.
    Ju, Y.-C., Tozza, S., Breuß, M., Bruhn, A., Kleefeld, A.: Generalised perspective Shape from Shading with Oren-Nayar reflectance. In: Proceedings of the 24th British Machine Vision Conference (BMVC 2013), Bristol, pp. 42.1–42.11. BMVA Press (2013)Google Scholar
  27. 27.
    Kao, C.Y., Osher, S., Qian, J.: Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations. J. Comput. Phys. 196 (1), 367–391 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kao, C.Y., Osher, S., Tsai, Y.-H.: Fast sweeping methods for static Hamilton–Jacobi equations. SIAM J. Numer. Anal. 42 (6), 2612–2632 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kozera, R.: Existence and uniqueness in photometric stereo. Appl. Math. Comput. 44 (1), 103 (1991)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Lions, P. L., Rouy, E., Tourin, A.: Shape-from-Shading, viscosity solutions and edges. Numerische Mathematik 64 (1), 323–353 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Lohse, V., Heipke, C., Kirk, R.L.: Derivation of planetary topography using multi-image Shape-from-Shading. Planet. Space Sci. 54 (7), 661–674 (2006)CrossRefGoogle Scholar
  32. 32.
    Mecca, R., Falcone, M.: Uniqueness and approximation of a photometric Shape-from-Shading model. SIAM J. Imaging Sci. 6 (1), 616–659 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Mecca, R., Tozza, S.: Shape reconstruction of symmetric surfaces using photometric stereo. In: Breuß, M., Bruckstein, A., Maragos, P. (eds.) Innovations for Shape Analysis: Models and Algorithms. Mathematics and Visualization, pp. 219–243. Springer, Berlin/Heidelberg (2013)CrossRefGoogle Scholar
  34. 34.
    Okatani, T., Deguchi, K.: Shape reconstruction from an endoscope image by Shape from Shading technique for a point light source at the projection center. Comput. Vis. Image Underst. 66 (2), 119–131 (1997)CrossRefGoogle Scholar
  35. 35.
    Oren, M., Nayar, S.K.: Generalization of Lambert’s reflectance model. In: Proceedings of the International Conference and Exhibition on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 239–246 (1994)Google Scholar
  36. 36.
    Oren, M., Nayar, S.K.: Generalization of the Lambertian model and implications for machine vision. Int. J. Comput. Vis. 14 (3), 227–251 (1995)CrossRefGoogle Scholar
  37. 37.
    Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18 (6), 311–317 (1975)CrossRefGoogle Scholar
  38. 38.
    Prados, E., Faugeras, O.: “Perspective Shape from Shading” and viscosity solutions. In: Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 826–831 (2003)Google Scholar
  39. 39.
    Prados, E., Faugeras, O.: Shape from Shading: a well-posed problem? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 870–877 (2005)Google Scholar
  40. 40.
    Qian, J., Zhang, Y.-T., Zhao, H.-K.: A fast sweeping method for static convex Hamilton-Jacobi equations. J. Sci. Comput. 31 (1–2), 237–271 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Quéau, Y., Lauze, F., Durou, J.-D.: Solving uncalibrated photometric stereo using total variation. J. Math. Imaging Vis. 52 (1), 87–107 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Ragheb, H., Hancock, E.R.: Surface radiance correction for shape from shading. Pattern Recognit. 38 (10), 1574–1595 (2005)CrossRefGoogle Scholar
  43. 43.
    Rouy, E., Tourin, A.: A viscosity solutions approach to Shape-from-Shading. SIAM J. Numer. Anal. 29 (3), 867–884 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge/New York (1999)zbMATHGoogle Scholar
  45. 45.
    Smith, W.A.P., Hancock, E.R.: Recovering facial shape and albedo using a statistical model of surface normal direction. In: Tenth IEEE International Conference on Computer Vision (ICCV), pp. 588–595, Oct 2005Google Scholar
  46. 46.
    Smith, W.A.P., Hancock, E.R.: Estimating facial albedo from a single image. IJPRAI 20 (6), 955–970 (2006)Google Scholar
  47. 47.
    Steffen, W., Koning, N., Wenger, S., Morisset, C., Magnor, M.: Shape: a 3D modeling tool for astrophysics. IEEE Trans. Vis. Comput. Graph. 17 (4), 454–465 (2011)CrossRefGoogle Scholar
  48. 48.
    Tankus, A., Kiryati, N.: Photometric stereo under perspective projection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Beijing, vol. 1, pp. 611–616 (2005)Google Scholar
  49. 49.
    Tankus, A., Sochen, N., Yeshurun, Y.: Shape-from-Shading under perspective projection. Int. J. Comput. Vis. 63 (1), 21–43 (2005)CrossRefGoogle Scholar
  50. 50.
    Tozza, S.: Analysis and Approximation of Non-Lambertian Shape-from-Shading Models. PhD thesis, Dipartimento di Matematica, Sapienza – Università di Roma, Roma, Jan 2015Google Scholar
  51. 51.
    Tozza, S., Falcone, M.: A semi-Lagrangian approximation of the Oren-Nayar PDE for the orthographic Shape–from–Shading problem. In: Battiato, S., Braz, J. (eds.) Proceedings of the 9th International Conference on Computer Vision Theory and Applications (VISAPP), vol. 3, pp. 711–716. SciTePress (2014)Google Scholar
  52. 52.
    Tozza, S., Falcone, M.: Analysis and approximation of some shape-from-shading models for non-Lambertian surfaces. J. Math. Imaging Vis. 55 (2), 153–178 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Tozza, S., Mecca, R., Duocastella, M., Del Bue, A.: Direct differential photometricstereo shape recovery of diffuse and specular surfaces. J. Math. Imaging Vis. 56 (1), 57–76 (2016)CrossRefzbMATHGoogle Scholar
  54. 54.
    Tsai, Y., Cheng, L., Osher, S., Zhao, H.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41, 673–694 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40 (9), 1528–1538 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Vogel, O., Breuß, M., Weickert, J.: Perspective Shape from Shading with non-Lambertian reflectance. In: Rigoll, G. (ed.) Pattern Recognition. Volume 5096 of Lecture Notes in Computer Science, pp. 517–526. Springer, Berlin/Heidelberg (2008)Google Scholar
  57. 57.
    Vogel, O., Breuß, M., Leichtweis, T., Weickert, J.: Fast Shape from Shading for Phong-type surfaces. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) Scale Space and Variational Methods in Computer Vision. Volume 5567 of Lecture Notes in Computer Science, pp. 733–744. Springer, Berlin/Heidelberg (2009)Google Scholar
  58. 58.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19 (1), 139–144 (1980)CrossRefGoogle Scholar
  59. 59.
    Wu, C., Narasimhan, S., Jaramaz, B.: A multi-image Shape-from-Shading framework for near-lighting perspective endoscopes. Int. J. Comput. Vis. 86, 211–228 (2010)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Yoon, K.-J., Prados, E., Sturm, P.: Joint estimation of shape and reflectance using multiple images with known illumination conditions. Int. J. Comput. Vis. 86, 192–210 (2010)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Zhang, R., Tsai, P.-S., Cryer, J.E., Shah, M.: Shape from Shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21 (8), 690–706 (1999)CrossRefzbMATHGoogle Scholar
  62. 62.
    Zheng, Q., Chellappa, R.: Estimation of illuminant direction, Albedo, and Shape from Shading. In: Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Lahaina, pp. 540–545, June 1991Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di Matematica “G. Castelnuovo”Sapienza – Università di RomaRomaItaly

Personalised recommendations