Advertisement

Non-rigid Shape Correspondence Using Surface Descriptors and Metric Structures in the Spectral Domain

  • Anastasia DubrovinaEmail author
  • Yonathan Aflalo
  • Ron Kimmel
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Finding correspondence between non-rigid shapes is at the heart of three-dimensional shape processing. It has been extensively addressed over the last decade, but efficient and accurate correspondence detection still remains a challenging task. Generalized Multidimensional Scaling (GMDS) is an approach that finds correspondence by mapping one shape into another, while attempting to preserve distances between pairs of corresponding points on the two shapes. A different approach consists in detecting correspondence between shapes by matching their pointwise surface descriptors. Recently, the Spectral GMDS (SGMDS) approach was introduced, according to which the GMDS was re-formulated in the natural spectral domain of the shapes. Here, we propose a method that combines matching based on geodesic distances and pointwise surface descriptors . Following SGMDS, in the proposed solution the entire problem is translated into the spectral domain, resulting in efficient correspondence computation. Efficiency and accuracy of the proposed method are demonstrated by comparing it to state-of-the-art approaches, using a standard correspondence benchmark.

Keywords

Geodesic Distance Spectral Domain Shape Match Maximally Stable Extremal Region Surface Descriptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Alon Shtern for fruitful discussions. This research was supported by European Community’s FP7- ERC program, grant agreement no. 267414.

References

  1. 1.
    Aflalo, Y., Dubrovina, A., Kimmel, R.: Spectral generalized multi-dimensional scaling. Int. J. Comput. Vis. 29, 1–13 (2016)MathSciNetGoogle Scholar
  2. 2.
    Aflalo, Y., Kimmel, R.: Spectral multidimensional scaling. Proc. Natl. Acad. Sci. 110 (45), 18052–18057 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration. In: ACM Transactions on Graphics (TOG), vol. 27, pp. 85. ACM (2008)Google Scholar
  4. 4.
    Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE: shape completion and animation of people. In: Proceedings of ACM Transactions on Graphics (SIGGRAPH), Los Angeles, vol. 24, pp. 408–416 (2005)Google Scholar
  5. 5.
    Anguelov, D., Srinivasan, P., Pang, H.-C., Koller, D., Thrun, S., Davis, J.: The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. Adv. Neural Inf. Process. Syst. 17, 33–40 (2004)Google Scholar
  6. 6.
    Aubry, M., Schlickewei, U., Cremers, D.: Pose-consistent 3d shape segmentation based on a quantum mechanical feature descriptor. In: Pattern Recognition, pp. 122–131. Springer (2011)Google Scholar
  7. 7.
    Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, pp. 1626–1633. IEEE (2011)Google Scholar
  8. 8.
    Ben-Tal, A., Zibulevsky, M.: Penalty/barrier multiplier methods for convex programming problems. SIAM J. Optim. 7 (2), 347–366 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bérard, P., Besson, G., Gallot, S.: Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4 (4), 373–398 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Robotics-DL Tentative, pp. 586–606. International Society for Optics and Photonics (1992)Google Scholar
  11. 11.
    Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, New York (2008)zbMATHGoogle Scholar
  13. 13.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM J. Sci. Comput. 28 (5), 1812–1836 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. USA 103 (5), 1168–1172 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. IJCV 89 (2–3), 266–286 (2010)CrossRefGoogle Scholar
  16. 16.
    Bronstein, M., Bronstein, A.M.: Shape recognition with spectral distances with spectral distances. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 33 (5), 1065–1071 (2011)Google Scholar
  17. 17.
    Burago, D., Burago, Y., Ivanov S.: A Course in Metric Geometry, vol. 33. American Mathematical Society Providence, Providence (2001)zbMATHGoogle Scholar
  18. 18.
    Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, pp. 2724–2729. IEEE (1991)Google Scholar
  19. 19.
    Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21 (1), 5–30 (2006). Special Issue: Diffusion Maps and WaveletsGoogle Scholar
  20. 20.
    Donoser, M., Bischof, H.: Efficient maximally stable extremal region (MSER) tracking. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, vol. 1, pp. 553–560. IEEE (2006)Google Scholar
  21. 21.
    Dubrovina, A., Kimmel, R.: Matching shapes by eigendecomposition of the laplace_belrami operator. In: Proceedings of the Symposium on 3D Data Processing Visualization and Transmission (3DPVT), Paris (2010)Google Scholar
  22. 22.
    Dubrovina, A., Kimmel, R.: Approximately isometric shape correspondence by matching pointwise spectral features and global geodesic structures. Adv. Adapt. Data Anal. 3 (1–2), 203–228 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. Trans. Pattern Anal. Mach. Intell. (PAMI) 25 (10), 1285–1295 (2003)Google Scholar
  24. 24.
    Gȩbal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. In: Computer Graphics Forum, vol. 28, pp. 1405–1413. Wiley Online Library (2009)Google Scholar
  25. 25.
    Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Gromov, M.: Structures metriques pour les varietes riemanniennes. Textes Mathematiques, vol. 1. CEDIC/Fernand Nathan, Paris (1981)Google Scholar
  27. 27.
    Hochbaum, D., Shmoys, D.: A best possible heuristic for the k-center problem. Math. Oper. Res. 10 (2), 180–184 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25 (5–7), 667–675 (2009)CrossRefGoogle Scholar
  29. 29.
    Huang, Q., Koltun, V., Guibas, L.: Joint shape segmentation with linear programming. In: ACM Transactions on Graphics (TOG), vol. 30, p. 125. ACM (2011)Google Scholar
  30. 30.
    Johnson, A.: Spin-images: a representation for 3-D surface matching. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh (1997)Google Scholar
  31. 31.
    Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 279–286. ACM Press/Addison-Wesley Publishing Co., New York (2000)Google Scholar
  32. 32.
    Kim, T.H., Lee, K.M., Lee, S.U.: Learning full pairwise affinities for spectral segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 35 (7), 1690–1703 (2013)CrossRefGoogle Scholar
  33. 33.
    Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. In: ACM SIGGRAPH 2011 papers (SIGGRAPH ’11), New York, pp. 79:1–79:12. ACM (2011)Google Scholar
  34. 34.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. (PNAS) 95 (15), 8431–8435 (1998)Google Scholar
  35. 35.
    Kovnatsky, A., Bronstein, M.M., Bronstein, A.M., Glashoff, K., Kimmel, R.: Coupled quasi-harmonic basis. Comput. Graph. Forum (EUROGRAPHICS) 32, 439–448 (2013)CrossRefGoogle Scholar
  36. 36.
    Lévy, B.: Laplace-Beltrami eigenfunctions towards an algorithm that “understands” geometry. In: IEEE International Conference on Shape Modeling and Applications (SMI 2006), Washington, DC, pp. 13–13. IEEE (2006)Google Scholar
  37. 37.
    Lipman, Y., Daubechies, I.: Conformal Wasserstein Distances: Comparing Surfaces in Polynomial Time Yaron Lipman, Ingrid Daubechies. Adv. Math. 227 (3) (2011)Google Scholar
  38. 38.
    Lipman, Y., Funkhouser, T.: Möbius voting for surface correspondence. ACM Trans. Graph. (Proc. SIGGRAPH) 28 (3), 72 (2009)Google Scholar
  39. 39.
    Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), Anchorage, pp. 1–8. IEEE (2008)Google Scholar
  40. 40.
    Mellado, N., Aiger, D., Mitra, N.J.: Super 4 pcs fast global pointcloud registration via smart indexing. In: Computer Graphics Forum, vol. 33, pp. 205–215. Wiley Online Library (2014)Google Scholar
  41. 41.
    Memoli, F.: On the use of Gromov-Hausdorff distances for shape comparison. In: Botsch, M., Pajarola, R., Chen, B., Zwicker, M. (eds.) Symposium on Point Based Graphics, Prague. Eurographics Association, pp. 81–90Google Scholar
  42. 42.
    Memoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5 (3), 313–347 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Vis. Math. III, 35–57 (2003)Google Scholar
  44. 44.
    Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31 (4), 30:1–30:11 (2012)Google Scholar
  45. 45.
    Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. In: Eurographics Symposium on Geometry Processing (SGP), Lyon (2010)Google Scholar
  46. 46.
    Ovsjanikov, M., Mérigot, Q., Pătrăucean, V., Guibas, L.: Shape matching via quotient spaces. In: Computer Graphics Forum, vol. 32, pp. 1–11. Wiley Online Library (2013)Google Scholar
  47. 47.
    Ovsjanikov, M., Sun, J., Guibas, L.J.: Global intrinsic symmetries of shapes. In: Computer Graphics Forum, vol. 27, pp. 1341–1348 (2008)Google Scholar
  48. 48.
    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2 (1), 15–36 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Pokrass, J., Bronstein, A.M., Bronstein M.M.: A correspondence-less approach to matching of deformable shapes. In: Scale Space and Variational Methods in Computer Vision, pp. 592–603. Springer, Berlin/New York (2012)Google Scholar
  50. 50.
    Pokrass, J., Bronstein, A.M., Bronstein, M.M., Sprechmann, P., Sapiro, G.: Sparse modeling of intrinsic correspondences. Comput. Graph. Forum (EUROGRAPHICS) 32, 459–268 (2013)CrossRefGoogle Scholar
  51. 51.
    Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Full and partial symmetries of non-rigid shapes. Int. J. Comput. Vis. (IJCV) (2009)Google Scholar
  52. 52.
    Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical shape matching. In: Proceedings of the Scale Space and Variational Methods (SSVM), Ein-Gedi (2011)Google Scholar
  53. 53.
    Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical matching of non-rigid shapes. In: Scale Space and Variational Methods in Computer Vision, pp. 604–615. Springer, Berlin (2012)Google Scholar
  54. 54.
    Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace-Beltrami spectra as “shape-DNA” of surfaces and solids. Comput. Aided Design 38, 342–366 (2006)CrossRefGoogle Scholar
  55. 55.
    Rodola, E., Bulo, S.R., Windheuser, T., Vestner, M., Cremers, D.: Dense non-rigid shape correspondence using random forests. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus (2014)Google Scholar
  56. 56.
    Rustamov, R., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Chazal, F., Guibas, L.: Map-based exploration of intrinsic shape differences and variability. In: SIGGRAPH, Hong Kong. ACM (2013)zbMATHGoogle Scholar
  57. 57.
    Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Symposium on Geometry Processing (SGP), Barcelona, pp. 225–233 (2007)Google Scholar
  58. 58.
    Sahillioğlu, Y., Yemez, Y.: Coarse-to-fine combinatorial matching for dense isometric shape correspondence. In: Computer Graphics Forum, vol. 30, pp. 1461–1470. Wiley Online Library (2011)Google Scholar
  59. 59.
    Shami, G., Aflalo, Y., Zibulevsky, M., Kimmel, R.: Classical scaling revisited. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp. 2255–2263 (2015)Google Scholar
  60. 60.
    Shtern, A., Kimmel, R.: Iterative closest spectral kernel maps. In: International Conference on 3D Vision (3DV), Tokyo (2014)Google Scholar
  61. 61.
    Shtern, A., Kimmel, R.: Matching the LBO eigenspace of non-rigid shapes via high order statistics. Axioms 3 (3), 300–319 (2014)CrossRefzbMATHGoogle Scholar
  62. 62.
    Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of the Symposium on Geometry Processing (SGP ’09), Aire-la-Ville, pp. 1383–1392. Eurographics Association (2009)Google Scholar
  63. 63.
    Tevs, A., Bokeloh, M., Wand, M., Schilling, A., Seidel, H.-P.: Isometric registration of ambiguous and partial data. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami Beach, pp. 1185–1192. IEEE Computer Society (2009)Google Scholar
  64. 64.
    Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, pp. 373–380. IEEE (2009)Google Scholar
  65. 65.
    Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.: Dense non-rigid surface registration using high-order graph matching. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, pp. 382–389. IEEE (2010)Google Scholar
  66. 66.
    Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., Tagliasacchi, A.: Deformation-driven shape correspondence. Comput. Graph. Forum (Proc. SGP) 27 (5), 1431–1439 (2008)Google Scholar
  67. 67.
    Zigelman, G., Kimmel, R., Kiryati, N.: Texture mapping using surface flattening via multi-dimensional scaling. IEEE Trans. Vis. Comput. Graph. 8 (2), 198–207 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anastasia Dubrovina
    • 1
    Email author
  • Yonathan Aflalo
    • 1
  • Ron Kimmel
    • 1
  1. 1.Technion, Israel Institute of TechnologyHaifaIsrael

Personalised recommendations