Skip to main content

Sparse Models for Intrinsic Shape Correspondence

  • Conference paper
  • First Online:
Perspectives in Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1475 Accesses

Abstract

We present a novel sparse modeling approach to non-rigid shape matching using only the ability to detect repeatable regions. As the input to our algorithm, we are given only two sets of regions in two shapes; no descriptors are provided so the correspondence between the regions is not know, nor do we know how many regions correspond in the two shapes. We show that even with such scarce information, it is possible to establish very accurate correspondence between the shapes by using methods from the field of sparse modeling, being this, the first non-trivial use of sparse models in shape correspondence. We formulate the problem of permuted sparse coding, in which we solve simultaneously for an unknown permutation ordering the regions on two shapes and for an unknown correspondence in functional representation. We also propose a robust variant capable of handling incomplete matches. Numerically, the problem is solved efficiently by alternating the solution of a linear assignment and a sparse coding problem. The proposed methods are evaluated qualitatively and quantitatively on standard benchmarks containing both synthetic and scanned objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aflalo, Y., Bronstein, A., Kimmel, R.: On convex relaxation of graph isomorphism. Proc. Nat. Acad. Sci. 112 (10), 2942–2947 (2015)

    Article  MathSciNet  Google Scholar 

  2. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: Proceedings of the SIGGRAPH Conference, Los Angeles (2005)

    Book  Google Scholar 

  3. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: Proceeding of Workshop on Dynamic Shape Capture and Analysis, Barcelona (2011)

    Google Scholar 

  4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Img. Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. Trans. PAMI 14, 239–256 (1992)

    Article  Google Scholar 

  6. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. PNAS 103 (5), 1168–1172 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, New York (2008)

    MATH  Google Scholar 

  8. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. IJCV 89 (2–3), 266–286 (2010)

    Article  Google Scholar 

  9. Bronstein, M.M., Bustos, B., Darom, T., Horaud, R., Hotz, I., Keller, Y., Keustermans, J., Kovnatsky, A., Litman, R., Reininghaus, J., Sipiran, I., Smeets, D., Suetens, P., Vandermeulen, D., Zaharescu, A., Zobel, V., Boyer, E., Bronstein, A.M.: Shrec 2011: robust feature detection and description benchmark. In: EUROGRAPHICS Workshop on 3D Object Retrieval (3DOR), Llandudno (2011)

    Google Scholar 

  10. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proceeding of Conference on Robotics and Automation, Sacramento (1991)

    Book  Google Scholar 

  11. Digne, J., Morel, J.M., Audfray, N., Mehdi-Souzani, C.: The level set tree on meshes. In: Proceeding 3DPVT, Paris (2010)

    Google Scholar 

  12. Elad, M.: Sparse and redundant representations: from theory to applications in signal and image processing. Springer, New York (2010)

    Book  MATH  Google Scholar 

  13. Elad, A., Kimmel, R.: Bending invariant representations for surfaces. In: Proceedings of CVPR, Colorado, pp. 168–174 (2001)

    Google Scholar 

  14. Gebal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. Comput. Graph. Forum 28 (5), 1405–1413 (2009)

    Article  Google Scholar 

  15. Golovinskiy, A., Funkhouser, T.: Consistent segmentation of 3d models. Comput. Graph. 33 (3), 262–269 (2009)

    Article  Google Scholar 

  16. Huang, Q., Koltun, V., Guibas, L.: Joint shape segmentation with linear programming. TOG 30, 125 (2011)

    Google Scholar 

  17. Kaick, O.V., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Comput. Graph. Forum 20, 1–23 (2010)

    Google Scholar 

  18. Kim, V.G., Lipman, Y., Funkhouser, T.: Blended intrinsic maps. TOG 30 (4), 79 (2011)

    Article  Google Scholar 

  19. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Quart. 2, 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lipman, Y., Funkhouser, T.: Mobius voting for surface correspondence. ACM Trans. Graph. (Proc. SIGGRAPH) 28 (3), 72 (2009)

    Google Scholar 

  21. Litman, R., Bronstein, A.M., Bronstein, M.M.: Diffusion-geometric maximally stable component detection in deformable shapes. Comput. Graph. 35 (3), 549–560 (2011)

    Article  Google Scholar 

  22. Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In: Proceeding CVPR, Anchorage (2008)

    Book  Google Scholar 

  23. Memoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5 (3), 313–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nesterov, Y.: Gradient methods for minimizing composite objective function. In: CORE Discussion Paper 2007/76, Center for Operations Research and Econometrics (CORE). Catholic University of Louvain, Louvain-la-Neuve (2007)

    Google Scholar 

  25. Nguyen, A., Ben-Chen, M., Welnicka, K., Ye, Y., Guibas, L.: An optimization approach to improving collections of shape maps. Comput. Graph. Forum 30, 1481–1491 (2011)

    Article  Google Scholar 

  26. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. TOG 31 (4), 129–139 (2012)

    Article  Google Scholar 

  27. Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. Comput. Graph. Forum 29, 1555–1564 (2010)

    Article  Google Scholar 

  28. Pokrass, J., Bronstein, A.M., Bronstein, M.M.: A correspondence-less approach to matching of deformable shapes. In: Proceeding SSVM, Ein-Gedi (2011)

    Google Scholar 

  29. Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Symmetries of non-rigid shapes. In: Proceeding of Workshop on Non-rigid Registration and Tracking Through Learning (NRTL), Stony Brook (2005)

    Google Scholar 

  30. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceeding of SGP, Barcelona, pp. 225–233 (2007)

    Google Scholar 

  31. Sahillioglu, Y., Yemez, Y.: Coarse-to-fine combinatorial matching for dense isometric shape correspondence. Comput. Graph. Forum 32, 177–189 (2012)

    Article  Google Scholar 

  32. Sprechmann, P., Bronstein, A.M., Sapiro, G.: Learning efficient structured sparse models. In: Proceedings of ICML, Edinburgh (2012)

    Google Scholar 

  33. Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of SGP, Berlin (2009)

    Google Scholar 

  34. Tevs, A., Berner, A., Wand, M., Ihrke, I., Seidel, H.P.: Intrinsic shape matching by planned landmark sampling. Comput. Graph. Forum 30, 543–552 (2011)

    Article  Google Scholar 

  35. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B 58 (1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen, D.-Or, Wolf, L., Hamarneh, G.: Prior knowledge for part correspondence. Comput. Graph. Forum 30, 553–562 (2011)

    Google Scholar 

  37. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: Proceedings of CVPR, Miami (2009)

    Book  Google Scholar 

  38. Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.: Dense non-rigid surface registration using high-order graph matching. In: Proceedings of CVPR, San Francisco (2010)

    Book  Google Scholar 

Download references

Acknowledgements

Work partially supported by GIF, ISF, and BSF. M.B. is supported by the ERC Starting grant No. 307047. A.B. is supported by the ERC Starting Grant No. 335491.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Bronstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Pokrass, J., Bronstein, A.M., Bronstein, M.M., Sprechmann, P., Sapiro, G. (2016). Sparse Models for Intrinsic Shape Correspondence. In: Breuß, M., Bruckstein, A., Maragos, P., Wuhrer, S. (eds) Perspectives in Shape Analysis. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24726-7_10

Download citation

Publish with us

Policies and ethics