Advertisement

Interference Coordination in Multi-cell MIMO Networks

  • Lu Yang
  • Wei Zhang
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

In this chapter, we present interference coordination techniques for multi-cell networks, where cell-edge users may suffer from severe inter-cell interference. We consider both CSI-sharing cooperation and MIMO cooperation for base stations. In particular, the CSI-sharing cooperation is studied in the context of a downlink scenario where three users are located in the inter-section of three cells, and each user belongs to one cell and receives interference from other cells. A beamforming scheme is proposed to achieve the optimal DoF region of the network. Then, the MIMO cooperation for base stations is also introduced in the form of cloud radio access network (C-RAN), which is an emerging network architecture for the 5G cellular network. The basic principle and implementation challenges of C-RAN are discussed.

References

  1. 1.
    Wu, J., Zhang, Z., Hong, Y., & Wen, Y. (2015). Cloud radio access network (C-RAN): A primer. IEEE Network, 29(1), 35–41.CrossRefGoogle Scholar
  2. 2.
    Jafar, S., & Fakhereddin, M. (2007). Degrees of freedom for the MIMO interference channel. IEEE Transactions on Information Theory, 53(7), 2637–2641.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gou, T., & Jafar, S. (2010). Degree of freedom of the K-user M × N MIMO interference channel. IEEE Transactions on Information Theory, 56(12), 6040–6057.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Shin, W., Lee, N., Lim, J., Shin, C., & Jang, K. (2011). On the design of interference alignment scheme for two-cell MIMO interference broadcast channels. IEEE Transactions on Wireless Communications, 10, 437–442.CrossRefGoogle Scholar
  5. 5.
    Suh, C., Ho, M., Lim, J., & Tse, D. (2011). Downlink interference alignment. IEEE Transactions on Communications, 59(9), 2616–2626.CrossRefGoogle Scholar
  6. 6.
    Yang, L., & Zhang, W. (2013). Opportunistic interference alignment in heterogeneous two-cell uplink network. In Proceedings of the IEEE International Conference on Communications (ICC 2013), Budapest, pp. 5448–5452, 9–13 June 2013.Google Scholar
  7. 7.
    Cadambe, V., & Jafar, S. (2008). Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory, 54(8), 3425–3441.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ghasemi, A., Motahari, A., & Khandani, A. (2010). Interference alignment for the K-user MIMO interference channel. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Austin, pp. 360–364, 13–18 June 2010.Google Scholar
  9. 9.
    Yetis, C., Gou, T., Jafar, S., & Kayran, A. (2010). On feasibility of interference alignment in MIMO interference network. IEEE Transactions on Signal Processing, 58(9), 4771–4782.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bresler, G., Cartwright, D., & Tse, D. (2014). Feasibility of interference alignment for the MIMO interference channel. IEEE Transactions on Information Theory, 60(9), 5573–5586.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Razaviyayn, M., Lyubeznik, G., & Luo, Z. (2012). On the Degrees of freedom achievable through interference alignment in a MIMO interference channel. IEEE Transactions on Signal Processing, 60(2), 812–821.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Razaviyayn, M., Sanjabi, M., & Luo, Z. (2012). Linear transceiver design for interference alignment: Complexity and computation. IEEE Transactions on Information Theory, 58(5), 2896–2910.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, C., Gou, T., & Jafar, S. (2014). Subspace alignment chains and the degree of freedom of the three-user MIMO interference channel. IEEE Transactions on Information Theory, 60(5), 2432–2479.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bresler, G., Cartwright, D., & Tse, D. (2011). Geometry of the 3-user MIMO interference channel. In Proceedings of the Allerton Conference on Communication, Control, and Computing, Monticello, pp. 1264–1271, 28–30 Sept 2011.Google Scholar
  15. 15.
    Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communications. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  16. 16.
    Jafar, S., & Shamai, S. (2008). Degrees of freedom region for the MIMO X channel. IEEE Transactions on Information Theory, 54(1), 151–170.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gomadam, K., Cadambe, V., & Jafar, S. (2011). A distributed numerical approach to interference alignment and applications to wireless interference networks. IEEE Transactions on Information Theory, 57(6), 3309–3322.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yang, L., & Zhang, W. (2014). Interference alignment with asymmetric complex signaling on MIMO X channels. IEEE Transactions on Communications, 62(10), 3560–3570.CrossRefGoogle Scholar
  19. 19.
    Maddah-Ali, M., Motahari, A., & Khandani, A. (2006). Signaling over MIMO multibase systems: Combination of multiaccess and broadcast schemes. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Seattle, pp. 2104–2108, 9–14 July 2006.Google Scholar
  20. 20.
    Bresler, G., Parekh, A., & Tse, D. (2010). The approximate capacity of the many-to-one and one-to-many Gaussian interference channel. IEEE Transactions on Information Theory, 56(9), 4566–4580.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Cadambe, V., Jafar, S., & Shamai, S. (2009). Interference alignment on the deterministic channel and application to Gaussian networks. IEEE Transactions on Information Theory, 55(1), 269–274.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Motahari, A., Oveis-Gharan, S., Maddah-Ali, M., & Khandani, A. (2014). Real interference alignment: Exploiting the potential of single antenna systems. IEEE Transactions on Information Theory, 60(8), 4799–4810.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Etkin, R., & Ordentilich, E. (2009). The degrees of freedom of the K-user Gaussian interference channel is discontinuous at rational channel coefficients. IEEE Transactions on Information Theory, 55(11), 4932–4946.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Avestimehr, S., Diggavi, S., & Tse, D. (2007). Determinister approach to wireless relay networks. In Proceedings of the Allerton Conference on Communication, Control, and Computing, Monticello, Sept 2007Google Scholar
  25. 25.
    Perlaza, S. M., Fawaz, N., Lasaulce, S., & Debbah, M. (2010). From spectrum pooling to space pooling: Opportunistic interference alignment in MIMO cognitive networks. IEEE Transactions on Signal Processing, 58(7), 3728–3741.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Amir, M., El-Keyi, A., & Nafle, M. (2010). Opportunistic interference alignment for multiuser cognitive radio. In Proceedings of the IEEE Information Theory Workshop, Cairo, 6–8 Jan 2010.Google Scholar
  27. 27.
    Yang, L., Zhang, W., Zheng, N., & Ching, P. C. (2014). Opportunistic user scheduling in MIMO cognitive radio networks. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014), Florence, pp 7303–7307, 4–9 May 2014.Google Scholar
  28. 28.
    Gou, T., Jafar, S., Wang, C., Jeon, S., & Chung, S. (2012). Aligned interference neutralization and the degrees of freedom of the 2 × 2 × 2 interference channel. IEEE Transactions on Information Theory, 58(7), 4381–4395.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wang, Z., Xiao, M., Wang, C., & Skoglund, M. (2013). Degrees of freedom of multi-hop MIMO broadcast networks with delayed CSIT. IEEE Communications Letters, 2(2), 207–210.Google Scholar
  30. 30.
    Yang, L., & Zhang, W. (2014). Degrees of freedom of relay-assisted MIMO interfering broadcast channels. In Proceedings of the IEEE Globe Communications Conference (Globecom), Austin, 8–12 Dec 2014.Google Scholar
  31. 31.
    Lee, N., & Heath, R., Jr. (2013). Degrees of freedom for the two-cell two-hop MIMO interference channel: Interference-free relay transmission and spectrally efficient relaying protocol. IEEE Transactions on Information Theory, 59(5), 2882–2896.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Yang, L., Zhang, W., & Jin, S. (2015). Interferene alignment in device-to-device LAN underlaying cellular network. IEEE Transactions on Wireless Communications, 14(7), 3715–3723.CrossRefGoogle Scholar
  33. 33.
    Cadambe, V., Jafar, S., Maleki, H., Ramchandran, K., & Suh, C. (2013). Asymptotic interference alignment for optimal repair of MDS codes in distributedstorage. IEEE Transactions on Information Theory, 59(5), 2974–2987.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yang, L., & Zhang, W. (2015). On degrees of freedom region of three-user MIMO interference channels. IEEE Transactions on Signal Processing, 63(3), 590–603.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Jung, B., & Shin, W. (2011). Opportunistic interference alignment for interference-limited cellular TDD uplink. IEEE Communications Letters, 15(2), 148–150.CrossRefGoogle Scholar
  36. 36.
    Cho, S., Huang, K., Kim, D., Lau, V., Chae, H., Seo, H., & Kim, B. (2012). Feedback-topology designs for interference alignment in MIMO interference channels. IEEE Transactions on Signal Processing, 60(12), 6561–6575.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Rao, X., Ruan, L., & Lau, V. (2013). Limited feedback design for interference alignment on MIMO interference networks with heterogeneous path loss and spatial correlations. IEEE Transactions on Signal Processing, 61(10), 2598–2607.MathSciNetCrossRefGoogle Scholar
  38. 38.
    Chae, C., Inoue, T., Mazzarese, D., & Heath, R., Jr. (2008). Coordinated beaforming for the multiuser MIMO broadcast channel with limited feedforward. IEEE Transactions on Signal Processing, 56(12), 6044–6056.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Chih-Lin, I., Rowell, C., Han, S., Xu, Z., Li, G., & Pan, Z. (2014). Toward green and soft: A 5G perspective. IEEE Communications Magazine, 52(2), 66–73.CrossRefGoogle Scholar
  40. 40.
    Shi, Y., Zhang, J., & Letaief, K. B. (2014). Group sparse beamforming for green cloud-RAN. IEEE Transactions on Wireless Communications, 13(5), 2809–2823.CrossRefGoogle Scholar
  41. 41.
    Peng, M., Wang, C., Lau, V., & Poor, H. V. (2015). Fronthaul-constrained cloud radio access networks: Insights and challenges. IEEE Transactions on Wireless Communications, 22(2), 152–160.CrossRefGoogle Scholar
  42. 42.
    Park, S., Simeone, O., Sahin, O., & Shamai, S. (2013). Robust and efficient distributed compression for cloud radio access networks. IEEE Transactions on Vehicular Technology, 62(2), 692–703.CrossRefGoogle Scholar
  43. 43.
    Rao, X., & Lau, V. (2015). Distributed fronthaul compression and joint signal recovery in cloud-RAN. IEEE Transactions on Signal Processing, 63(4), 1056–1065.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Park, S., Simeone, O., Sahin, O., & Shamai, S. (2013). Joint decompression and decoding for cloud radio access networks. IEEE Transactions on Signal Processing Letter, 20(5), 503–506.CrossRefGoogle Scholar
  45. 45.
    Park, S., Simeone, O., Sahin, O., & Shamai, S. (2013). Joint precoding and multivariate backhaul compression for the downlink of cloud radio access networks. IEEE Transactions on Signal Processing, 20(5), 503–506.MathSciNetCrossRefGoogle Scholar
  46. 46.
    Dai, B., & Yu, W. (2014). Sparse beamforming and user-centric clustering for downlink cloud radio access network. IEEE Access, 2, 1326–1339.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Lu Yang
    • 1
  • Wei Zhang
    • 1
  1. 1.The University of New South WalesSydneyAustralia

Personalised recommendations