Skip to main content

Quasiplatonic Surfaces, and Automorphisms

  • Chapter
  • First Online:
  • 1769 Accesses

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

Quasiplatonic Riemann surfaces or algebraic curves, sometimes also called curves with many automorphisms or triangle curves, can be characterised in many equivalent ways, for example as those curves having a regular dessin, one with the greatest possible degree of symmetry. The sphere and the torus each support infinitely many regular dessins, easily described in both cases. For each genus g > 1 there are, up to isomorphism, only finitely many regular dessins; this chapter gives complete lists for genera 2, 3 and 4, and discusses methods for counting and classifying them. These methods often involve counting generating triples for finite groups, in some cases with the aid of character theory (which we briefly summarise) and Möbius inversion. We present several important infinite families of quasiplatonic curves, such as Hurwitz and Macbeath-Hurwitz curves, Lefschetz and Accola-Maclachlan curves. We prove that like their counterparts, the curves with trivial automorphism group, quasiplatonic curves can be defined over their field of moduli. Many of the automorphism groups appearing in this chapter are 2-dimensional linear or projective groups over finite fields, so we summarise their most relevant properties in the final section.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Accola, R.D.M.: On the number of automorphisms of a closed Riemann surface. Trans. Am. Math. Soc. 131, 398–408 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bolza, O.: On binary sextics with linear transformations onto themselves. Am. J. Math. 10, 47–70 (1888)

    Article  MathSciNet  MATH  Google Scholar 

  3. Breda d’Azevedo, A.J., Jones, G.A.: Platonic hypermaps. Beiträge Algebra Geom. 42, 1–37 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Burnside, W.: Note on the simple group of order 504. Math. Ann. 52, 174–176 (1899)

    Article  MathSciNet  MATH  Google Scholar 

  5. Conder, M.D.E.: Regular maps and hypermaps of Euler characteristic − 1 to − 200. J. Comb. Theory Ser. B 99, 455–459 (2009). Associated lists of computational data available at http://www.math.auckland.ac.nz/~conder/hypermaps.html

    Google Scholar 

  6. Conder, M.D.E.: An update on Hurwitz groups. Groups Complex. Cryptol. 2, 35–49 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Conder, M.D.E., Jones, G.A., Streit, M., Wolfart, J.: Galois actions on regular dessins of small genera. Rev. Mat. Iberoam. 29, 163–181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Connor, T., Leemans, D.: An atlas of subgroup lattices of finite almost simple groups. Ars Math. Contemp. 8(2), 259–266 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: ATLAS of Finite Groups. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  10. Coombes, K., Harbater, D.: Hurwitz families and arithmetic Galois groups. Duke Math. J. 52, 821–839 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coxeter, H.S.M., Moser, W.O.J.: Generators and Relations for Discrete Groups. Springer, Berlin/Heidelberg (1980)

    Book  MATH  Google Scholar 

  12. Dèbes, P., Emsalem, M.: On fields of moduli of curves. J. Algebra 211, 42–56 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dickson, L.E.: Linear Groups. Dover, New York (1958)

    Google Scholar 

  14. Downs, M.L.N.: The Möbius function of PSL 2(q), with application to the maximal normal subgroups of the modular group. J. Lond. Math. Soc. 43, 61–75 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Downs, M.L.N., Jones, G.A.: Enumerating regular objects with a given automorphism group. Discrete Math. 64, 299–302 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Downs, M.L.N., Jones, G.A.: Möbius inversion in Suzuki groups and enumeration of regular objects. In: Proceedings in Mathematics and Statistics, SIGMAP 2014 Proceedings (to appear)

    Google Scholar 

  17. Džambić, A.: Macbeath’s infinite series of Hurwitz groups. In: Holzapfel, R.-P., Uludağ, A.M., Yoshida, M. (eds.) Arithmetic and Geometry Around Hypergeometric Functions. Progress in Mathematics, vol. 260, pp. 101–108. Birkhäuser, Basel (2007)

    Chapter  Google Scholar 

  18. Feierabend, F.: Galois-Operationen auf verallgemeinerten Macbeath-Hurwitz Kurven. Dissertation, Frankfurt (2008)

    Google Scholar 

  19. Fricke, R.: Ueber eine einfache Gruppe von 504 Operationen. Math. Ann. 52, 321–339 (1899)

    Article  MathSciNet  Google Scholar 

  20. Fulton, W., Harris, J.: Representation Theory. Springer, Berlin (1991)

    MATH  Google Scholar 

  21. Garbe, D.: Über die regulären Zerlegungen geschlossener orientierbarer Flächen. J. Reine Angew. Math. 237, 39–55 (1969)

    MathSciNet  MATH  Google Scholar 

  22. Girondo, E., Wolfart, J.: Conjugators of Fuchsian groups and quasiplatonic surfaces. Q. J. Math. 56, 525–540 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. González-Diez, G., Jaikin-Zapirain, A.: The absolute Galois group acts faithfully on regular dessins and on Beauville surfaces. Proc. Lond. Math. Soc. (3) 111(4), 775–796 (2015)

    Google Scholar 

  24. Hall, P.: The Eulerian functions of a group. Q. J. Math. 7, 134–151 (1936)

    Article  MATH  Google Scholar 

  25. Harvey, W.J.: Cyclic groups of automorphisms of a compact Riemann surface. Q. J. Math. 17, 86–97 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hidalgo, R.: Edmonds maps on the Fricke-Macbeath curve. Ars Math. Contemp. 8, 275–289 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  28. Jones, G.A.: Ree groups and Riemann surfaces. J. Algebra 165, 41–62 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jones, G.A.: Hypermaps and multiply quasiplatonic Riemann surfaces. Eur. J. Comb. 33, 1588–1605 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jones, G.A., Silver, S.A.: Suzuki groups and surfaces. J. Lond. Math. Soc. (2) 48, 117–125 (1993)

    Google Scholar 

  31. Jones, G.A., Streit, M., Wolfart, J.: Wilson’s map operations on regular dessins and cyclotomic fields of definition. Proc. Lond. Math. Soc. 100, 510–532 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kucharczyk, R.: On arithmetic properties of Fuchsian groups and Riemann surfaces. Dissertation, Bonn (2014)

    Google Scholar 

  33. Kulkarni, R.: A note on Wiman and Accola-Maclachlan surfaces. Ann. Acad. Sci. Fenn. Math. 16, 83–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kuribayashi, I., Kuribayashi, A.: Automorphism groups of compact Riemann surfaces of genera three and four. J. Pure Appl. Algebra 65, 277–292 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Larsen, M.: How often is 84(g − 1) achieved? Isr. J. Math. 126, 1–16 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Macbeath, A.M.: On a theorem of Hurwitz. Proc. Glasg. Math. Assoc. 5, 90–96 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  37. Macbeath, A.M.: Generators of the linear fractional groups. In: Number Theory (Proc. Sympos. Pure Math., Vol. XII, Houston, Tex., 1967), pp. 14–32. American Mathematical Society, Providence (1969)

    Google Scholar 

  38. Maclachlan, C.: A bound for the number of automorphisms of a compact Riemann surface. J. Lond. Math. Soc. 44, 265–272 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  39. Magnus, W.: Noneuclidean Tesselations and Their Groups. Academic, New York (1974)

    MATH  Google Scholar 

  40. Pierro, E.: The Möbius function of the small Ree groups. arXiv:1410.8702v2 [math.GR] (2014). Accessed 20 Jan 2015

    Google Scholar 

  41. Popp, H.: On a conjecture of H. Rauch on theta constants and Riemann surfaces with many automorphisms. J. Reine Angew. Math. 253, 66–77 (1972)

    MathSciNet  MATH  Google Scholar 

  42. Potočnik, P.: Census of rotary maps. http://www.fmf.uni-lj.si/~potocnik/work.htm. Accessed 3 Feb 2015

  43. Rauch, H.E.: Theta constants on a Riemann surface with many automorphisms. In: Symposia Mathematica III, pp. 305–322. Academic, Cambridge, Ma., (1970)

    Google Scholar 

  44. Schlage-Puchta, J.-C., Wolfart, J.: How many quasiplatonic surfaces?. Arch. Math. 86, 129–132 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Serre, J.-P.: Topics in Galois Theory. Jones and Bartlett, Boston (1992)

    MATH  Google Scholar 

  46. Sherk, F.A., The regular maps on a surface of genus 3. Can. J. Math. 11, 452–480 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  47. Siegel, C.L.: Topics in Complex Function Theory, vol. II. Wiley, New York (1971)

    MATH  Google Scholar 

  48. Singerman, D.: Subgroups of Fuchsian groups and finite permutation groups. Bull. Lond. Math. Soc. 2, 319–323 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  49. Singerman, D.: Finitely maximal Fuchsian groups. J. Lond. Math. Soc. (2) 6, 29–38 (1972)

    Google Scholar 

  50. Singerman, D.: Riemann surfaces, Belyi functions and hypermaps. In: Bujalance, E., Costa, A.F., Martinez, E. (eds.) Topics in Riemann Surfaces and Fuchsian Groups. London Mathematical Society Lecture Note Series, vol. 287, pp. 43–68. Cambridge University Press, Cambridge (2001)

    Chapter  Google Scholar 

  51. Streit, M.: Field of definition and Galois orbits for the Macbeath-Hurwitz curves. Arch. Math. 74, 342–349 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Streit, M., Wolfart, J.: Characters and Galois invariants of regular dessins. Rev. Mat. Complut. 13, 49–81 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Takeuchi, K.: Arithmetic triangle groups. J. Math. Soc. Jpn. 29, 29–38 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  54. Takeuchi, K.: Commensurability classes of arithmetic triangle groups. J. Fac. Sci. Tokyo Sect. IA Math. 24, 201–212 (1977)

    MathSciNet  MATH  Google Scholar 

  55. Tsuzuku, T.: Finite Groups and Finite Geometries. Cambridge Tracts in Mathematics, vol. 78. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  56. Turbek, P.: The full automorphism group of the Kulkarni surface. Rev. Mat. Complut. 10, 265–276 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wilson, R.A.: The Finite Simple Groups. Springer, London (2009)

    Book  MATH  Google Scholar 

  58. Wiman, A.: Über die hyperelliptischen Curven und diejenigen von Geschlecht p = 3 welche eindeutige Transformationen in sich zulassen. Bihang till K. Svenska Vet.-Akad. Handlingar 21, 1–23 (1895–1896)

    Google Scholar 

  59. Wolfart, J.: ABC for polynomials, dessins d’enfants, and uniformization – a survey. In: Schwarz, W., Steuding, J. (eds.) Elementare und Analytische Zahlentheorie (Tagungsband), Proceedings ELAZ-Conference May 24–28, 2004, pp. 313–345. Steiner, Stuttgart (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

5.5 Appendix: Linear and Projective Groups

5.5 Appendix: Linear and Projective Groups

Many of the groups appearing in this book are linear or projective groups, so we summarise their definitions and properties here. See [13], [27, Sect. II.6–II.8], [55, Sect. 4.5], or [57] for details.

If R is a commutative ring with identity, then for each integer n ≥ 1 the general linear group \(\mathop{\mathrm{GL}}\nolimits _{n}(R)\) consists of the n × n matrices M over R which are invertible, that is, those for which the determinant \(\det M\) is a unit in R. The function \(\det\) is an epimorphism from \(\mathop{\mathrm{GL}}\nolimits _{n}(R)\) to the multiplicative group U(R) of units in R, so its kernel, the special linear group \(\mathop{\mathrm{SL}}\nolimits _{n}(R)\) consisting of those M with \(\det M = 1\), is a normal subgroup of \(\mathop{\mathrm{GL}}\nolimits _{n}(R)\) with \(\mathop{\mathrm{GL}}\nolimits _{n}(R)/\mathop{\mathrm{SL}}\nolimits _{n}(R)\mathop{\cong}U(R)\). In particular, if R is a field K then \(U(R) = K^{{\ast}}:= K\setminus \{0\}\).

For any field K and n ≥ 2, the natural action of \(\mathop{\mathrm{GL}}\nolimits _{n}(K)\) on the vector space V = K n induces an action of this group on the (n − 1)-dimensional projective space \(\mathbb{P}^{n-1}(K)\) formed by the 1-dimensional subspaces of V. The kernel of this action is a normal subgroup \(Z\mathop{\cong}K^{{\ast}}\) consisting of the scalar matrices \(\lambda I_{n}\;(\lambda \in K^{{\ast}})\), and the group of transformations induced on \(\mathbb{P}^{n-1}(K)\) is the projective general linear group \(\mathop{\mathrm{PGL}}\nolimits _{n}(K)\mathop{\cong}\mathop{\mathrm{GL}}\nolimits _{n}(K)/Z\). In this action, the subgroup \(\mathop{\mathrm{SL}}\nolimits _{n}(K)\) induces the projective special linear group \(\mathop{\mathrm{PSL}}\nolimits _{n}(K)\mathop{\cong}\mathop{\mathrm{SL}}\nolimits _{n}(K)/(\mathop{\mathrm{SL}}\nolimits _{n}(K) \cap Z)\mathop{\cong}\mathop{\mathrm{SL}}\nolimits _{n}(K)Z/Z\). This is a simple group for all n ≥ 2 and all fields K, except when n = 2 and | K |  = 2 or 3, in which case the group is isomorphic to S 3 or A 4. The kernel \(\mathop{\mathrm{SL}}\nolimits _{n}(K) \cap Z\) of the induced epimorphism \(\mathop{\mathrm{SL}}\nolimits _{n}(K) \rightarrow \mathop{\mathrm{PSL}}\nolimits _{n}(K)\) is isomorphic to the group of nth roots of 1 in K, a cyclic group of order dividing n, while \(\mathop{\mathrm{PGL}}\nolimits _{n}(K)/\mathop{\mathrm{PSL}}\nolimits _{n}(K)\) is isomorphic to the quotient of K by its subgroup of nth powers (so \(\mathop{\mathrm{PSL}}\nolimits _{n}(K) =\mathop{ \mathrm{PGL}}\nolimits _{n}(K)\) whenever K is algebraically closed).

The affine group \(\mathop{\mathrm{AGL}}\nolimits _{n}(K)\) consists of the affine transformations of V, those of the form vAv + b where \(A \in \mathop{\mathrm{GL}}\nolimits _{n}(K)\) and b ∈ V. This is a semidirect product of a normal subgroup, isomorphic to the additive group of V, consisting of the translations vv + b, and a complement \(\mathop{\mathrm{GL}}\nolimits _{n}(K)\), consisting of the affine transformations with b = 0, that is, the linear transformations of V.

These groups \(\mathop{\mathrm{GL}}\nolimits _{n}(K)\), \(\mathop{\mathrm{SL}}\nolimits _{n}(K)\), \(\mathop{\mathrm{PGL}}\nolimits _{n}(K)\), \(\mathop{\mathrm{PSL}}\nolimits _{n}(K)\) and \(\mathop{\mathrm{AGL}}\nolimits _{n}(K)\) can all be extended by the Galois group \(\mathop{\mathrm{Gal}}\nolimits K\) of the field K, acting on coordinates of vectors and points, to form groups

$$\displaystyle{\Gamma \mathrm{L}_{n}(K)\;,\;\Sigma \mathrm{L}_{n}(K)\;,\;\mathrm{P}\Gamma \mathrm{L}_{n}(K)\;,\;\mathrm{P}\Sigma \mathrm{L}_{n}(K)\quad \text{and}\quad \mathrm{A}\Gamma \mathrm{L}_{n}(K)}$$

containing them as normal subgroups with quotients isomorphic to \(\mathop{\mathrm{Gal}}\nolimits K\).

If K is the finite field \(\mathbb{F}_{q}\) of order q, then these groups such as \(\mathop{\mathrm{GL}}\nolimits _{n}(K)\) are often denoted by \(\mathop{\mathrm{GL}}\nolimits _{n}(q)\), etc., with the finite simple group \(\mathop{\mathrm{PSL}}\nolimits _{n}(q)\) written as L n (q) in ATLAS notation [9]. In this case, \(\mathop{\mathrm{SL}}\nolimits _{n}(q) \cap Z\mathop{\cong}\mathop{\mathrm{PGL}}\nolimits _{n}(q)/\mathop{\mathrm{PSL}}\nolimits _{n}(q)\mathop{\cong}C_{d}\), where \(d =\gcd (n,q - 1)\). We have q = p e for some prime p, so that \(\mathop{\mathrm{Gal}}\nolimits K\) is a cyclic group of order e, generated by the Frobenius automorphism xx p. Counting linearly independent row-vectors gives \(\vert \mathop{\mathrm{GL}}\nolimits _{n}(q)\vert =\prod _{ i=0}^{n-1}(q^{n} - q^{i})\), and the orders of the other related groups are easily deduced from this.

The case n = 2 is particularly important. The projective line \(\mathbb{P}^{1}(K)\) can be identified with \(K \cup \{\infty \}\) by identifying the point with homogeneous coordinates [x, y], that is the subspace of V = K 2 spanned by the non-zero vector (x, y), with the element \(x/y\;(= \infty \) if y = 0). If we let matrices act on the left of column vectors, so that each \(A \in \mathop{\mathrm{GL}}\nolimits _{2}(K)\) acts as

$$\displaystyle{A =\Big (\,\begin{array}{*{10}c} a& &b\\ c & &d \end{array} \,\Big)\;:\;\Big (\,\begin{array}{*{10}c} x\\ y \end{array} \,\Big)\mapsto \Big(\,\begin{array}{*{10}c} ax + by\\ cx + dy \end{array} \,\Big),}$$

then the projective transformation of \(\mathbb{P}^{1}(K)\) corresponding to A is given by

$$\displaystyle{z = \frac{x} {y}\;\mapsto \;\frac{ax + by} {cx + dy} = \frac{az + b} {cz + d}\,.}$$

This action of \(\mathop{\mathrm{PGL}}\nolimits _{2}(K)\) on \(\mathbb{P}^{1}(K)\) is sharply 3-transitive, meaning that the group acts regularly on ordered triples of distinct points, so a non-identity element has at most two fixed points. The subgroup fixing any one point is conjugate to the subgroup fixing \(\infty \); this is induced by the matrices A with c = 0, and it is a semidirect product of an abelian normal subgroup isomorphic to the additive group of K, given by also taking \(a = d = 1\), and a complement isomorphic to the multiplicative group K , given by taking \(b = c = 0\). This complement is the subgroup of \(\mathop{\mathrm{PGL}}\nolimits _{2}(K)\) fixing 0 and \(\infty \), and the subgroup fixing any two points is conjugate to it. This describes all the elements with fixed points. There are also elements with no fixed points in \(\mathbb{P}^{1}(K)\). When \(K = \mathbb{F}_{q}\), so that \(\vert \mathop{\mathrm{PGL}}\nolimits _{2}(K)\vert = q(q^{2} - 1)\), these elements have orders dividing q + 1; they have two fixed points when regarded as elements of \(\mathop{\mathrm{PGL}}\nolimits _{2}(q^{2})\) acting on \(\mathbb{P}^{1}(\mathbb{F}_{q^{2}})\) via the inclusion of \(\mathbb{F}_{q}\) in \(\mathbb{F}_{q^{2}}\). The elements of \(\mathop{\mathrm{PGL}}\nolimits _{2}(q)\) fixing two points of \(\mathbb{P}^{1}(\mathbb{F}_{q})\) have orders dividing q − 1, and those with one fixed point have order p, where q = p e for a prime p.

We are particularly interested in the groups \(\mathop{\mathrm{PSL}}\nolimits _{2}(q) =\mathop{ \mathrm{SL}}\nolimits _{2}(q)/\{ \pm I\}\), often denoted by L 2(q) in ATLAS notation [9]; see [13, Chap. XII] or [27, Sect. II.8] for full details and proofs of their following properties.

The group \(\mathop{\mathrm{PSL}}\nolimits _{2}(q)\) is a subgroup of \(\mathop{\mathrm{PGL}}\nolimits _{2}(q)\), of order \(q(q^{2} - 1)/d\) and of index \(d =\gcd (2,q - 1)\) equal to 1 or 2 as p = 2 or p > 2. If p = 2 then \(\mathop{\mathrm{GL}}\nolimits _{2}(q) =\mathop{ \mathrm{SL}}\nolimits _{2}(q) \times Z\) with \(\mathop{\mathrm{SL}}\nolimits _{2}(q) =\mathop{ \mathrm{PSL}}\nolimits _{2}(q) =\mathop{ \mathrm{PGL}}\nolimits _{2}(q)\), so in this case the above description of \(\mathop{\mathrm{PGL}}\nolimits _{2}(q)\) applies to \(\mathop{\mathrm{PSL}}\nolimits _{2}(q)\). For any q, a non-identity element of \(\mathop{\mathrm{PSL}}\nolimits _{2}(q)\) has order dividing \((q - 1)/d\), equal to p, or dividing \((q + 1)/d\), as it fixes two, one or no points in \(\mathbb{P}^{1}(\mathbb{F}_{q})\). Equivalently, if t is its trace (defined only up to multiplication by − 1), then t 2 − 4 is respectively a non-zero square, equal to 0, or a non-square in \(\mathbb{F}_{q}\). The automorphism group of \(\mathop{\mathrm{PSL}}\nolimits _{2}(q)\) can be identified with \(\mathrm{P}\Gamma \mathrm{L}_{2}(q)\), acting by conjugation on its normal subgroup \(\mathop{\mathrm{PSL}}\nolimits _{2}(q)\).

Dickson described the subgroups of \(\mathop{\mathrm{PSL}}\nolimits _{2}(q)\) in [13, Chap. XII], see also [27, Sect. II.8], and from this one can describe the maximal subgroups:

Proposition 5.3

Any maximal subgroup of \(\mathop{\mathrm{PSL}}\nolimits _{2}(q)\) has one of the following forms, where \(d = (2,q - 1)\) :

  1. 1.

    the stabiliser of a point in \(\mathbb{P}^{1}(\mathbb{F}_{q})\) , isomorphic to the unique subgroup of order \(q(q - 1)/d\) in \(\mathop{\mathrm{AGL}}\nolimits _{1}(q)\) ;

  2. 2.

    a dihedral group of order 2(q ± 1)∕d;

  3. 3.

    a group isomorphic to \(\mathop{\mathrm{PSL}}\nolimits _{2}(r)\) where \(\mathbb{F}_{r}\) is a maximal subfield of \(\mathbb{F}_{q}\) (that is r = p f with e∕f prime);

  4. 4.

    a group isomorphic to \(\mathop{\mathrm{PGL}}\nolimits _{2}(r)\) where q = r 2 is a perfect square;

  5. 5.

    a group isomorphic to A 4 , S 4 or A 5 . \(\square \)

Maximal subgroups of types (1) and (2) exist for all q, and those of types (3) and (4) exist whenever r satisfies the stated conditions. Subgroups isomorphic to A 4 exist if and only if q is odd or q = 2e with e even; subgroups isomorphic to S 4 exist if and only if \(\,q \equiv \pm 1\bmod 8\,\); subgroups isomorphic to A 5 exist if and only if p = 5 or \(\,q \equiv \pm 1\bmod 5\,\); when they exist, these subgroups of type (5) are not always maximal.

We also need the character table for \(\mathop{\mathrm{PSL}}\nolimits _{2}(q)\). In fact we give three tables, for \(\,q \equiv 1\bmod 4\,\), \(\,q \equiv -1\bmod 4\,\) and q = 2e.

In each table, the first row indicates the orders of the elements in the corresponding column: 1 for the identity element in the first column, p (where q = p e) for the parabolic elements (two conjugacy classes when q is odd, one when q = 2e), and then in the last two columns, representing the hyperbolic and elliptic classes, the divisors n > 1 of \((q - 1)/2\) and \((q + 1)/2\) (or of q − 1 and q + 1 when q = 2e). The hyperbolic and elliptic classes are each represented by an element a i or b j, where a and b are elements of orders (q ∓ 1)∕2 respectively (or q ∓ 1 when q = 2e). In Table 5.5, where \(\,q \equiv 1\bmod 4\,\), we have \(i,j = 1,\ldots,r:= (q - 1)/4\); for instance, the involutions are represented by the hyperbolic element a r. In Table 5.6, where \(\,q \equiv -1\bmod 4\,\), we have \(i = 1,\ldots,r - 1\) and \(j = 1,\ldots,r:= (q + 1)/4\), with the involutions represented by the elliptic element b r. In Table 5.7, where q = 2e, we have \(i = 1,\ldots,(q - 2)/2\) and \(j = 1,\ldots,q/2\); in this case the involutions are parabolic.

Table 5.5 The character table of \(\mathop{\mathrm{PSL}}\nolimits _{2}(q)\) for \(\,q \equiv 1\bmod 4\,\)
Table 5.6 The character table of \(\mathop{\mathrm{PSL}}\nolimits _{2}(q)\) for \(\,q \equiv -1\bmod 4\,\)
Table 5.7 The character table of \(\mathop{\mathrm{PSL}}\nolimits _{2}(q)\) for q = 2e

In each table, the entries in the first column are the degrees χ(1) of the corresponding irreducible characters χ. Each row represents a single character, except in the cases χ(1) = q ± 1. In Table 5.5, the last two rows represent r − 1 and r characters, with \(k = 1,\ldots,r - 1\) and l = 1, , r respectively. In Table 5.6, the last two rows each represent \(r - 1 = (q - 3)/4\) characters, with \(k,l = 1,\ldots,r - 1\). In both tables, the preceding four rows each represent a single character, as do the first two rows of Table 5.7, where the last two rows represent \((q - 2)/2\) and q∕2 characters respectively. In Tables 5.5 and 5.6 we have \(\zeta =\zeta _{(q-1)/2}\) and \(\xi =\zeta _{(q+1)/2}\), but in Table 5.7 we have \(\zeta =\zeta _{q-1}\) and \(\xi =\zeta _{q+1}\), where \(\zeta _{n}:=\exp (2\pi i/n)\).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jones, G.A., Wolfart, J. (2016). Quasiplatonic Surfaces, and Automorphisms. In: Dessins d'Enfants on Riemann Surfaces. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-24711-3_5

Download citation

Publish with us

Policies and ethics