Skip to main content

Microbial Ecology Associated with Earthworm and Its Gut

  • Chapter
  • First Online:
Book cover Prospects of Organic Waste Management and the Significance of Earthworms

Abstract

Soil bears infinite life that promotes diverse microflora. Soil bacteria viz., Bacillus, Pseudomonas and Streptomyces etc., are prolific producers of secondary metabolites which act against numerous co-existing phytopathogeic fungi and human pathogenic bacteria (Pathma and Sakthivel. SpringerPlus 1:1–26, 2012). Microbial communities also support a large number of soil invertebrates, which in turn have an important regulatory effect on the microbial populations (Edwards. Earthworm ecology, 2nd edn. CRC Press, Boca Raton, 2004). Decomposition of organic material is assumed to be mainly mediated by microorganisms. The rate and extent of the decomposition depends on the chemical composition of the material, environmental factors, and on the microbial community. The activity of the decomposing microorganisms is accelerated by the activity of the soil fauna (Schonholzer et al. FEMS Microbiol Ecol 28:235–48, 1999). According to Lavelle and Spain (Soil ecology. Kluwer Academic Publishers, Dordrecht, 2001), microorganisms show a high degree of specialization and display a large number of enzymes for the breakdown of organic matter. It is certainly proven that the growth of earthworms is dependent on microbial associations. In fact, microorganisms are largely responsible for the decomposition of the materials ingested by earthworms and in turn earthworm regulates modifications in microbial communities thus sharing a mutualistic relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aichbergerr V (1914) Untersuchungen Uber Die Ernahrung Des Regenwurmes. Kleinwelt 6:53

    Google Scholar 

  • Aira M, Monroy F, Dominguez J (2007) Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Sci Total Environ 385:252–261

    Article  CAS  Google Scholar 

  • Aira M, Monroy F, Dominguez J (2009) Changes in bacterial numbers and microbial activity of pig slurry during gut transit of epigeics and anecic earthworms. J Total Environ 162:1404–1407

    CAS  Google Scholar 

  • Amador JA, Görres JH (2007) Microbiological characterization of the structure built by earthworms and ants in an agricultural field. Soil Biol Biochem 39:2070–2077

    Article  CAS  Google Scholar 

  • Barois I, Lavelle P (1986) Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidæ, Oligochæta). Soil Biol Biochem 18:539–541

    Article  Google Scholar 

  • Bassalik E (1913) Mer Silikatersetzung durch Bodenbakterien. Gar Phy Siol 2:1–2

    CAS  Google Scholar 

  • Binet F, Hallaire V, Curmi P (1997) Agricultural practices and the spatial distribution of earthworms in maize fields. Relationships between earthworm abundance, maize plants and soil compaction. Soil Biol Biochem 29:577–583

    Article  CAS  Google Scholar 

  • Bohlen PJ, Edwards CA (1995) Earthworm effects on N dynamics and soil respiration in microcosms receiving organic and inorganic nutrients. Soil Biol Biochem 27:341–348

    Article  CAS  Google Scholar 

  • Bolton PJ, Phillipson J (1976) Burrowing, feeding, egestion, and energy budget of Allolobophora rosea (Savigny) (Lumbricidae). Oecologia (Berlin) 23:225–245

    Article  CAS  Google Scholar 

  • Bonkowski M, Schaefer M (1997) Interactions between earthworms and soil protozoa, a new component in the soil food web. Soil Biol Biochem 29:499–502

    Article  CAS  Google Scholar 

  • Bonkowski M, Griffiths BS, Ritz K (2000) Food preferences of earthworms for soil fungi. Pedobiologia 44(6):666–676

    Google Scholar 

  • Brown G (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170:209–231

    Article  CAS  Google Scholar 

  • Brown G, Doube BM (2004) Functional interactions between earthworms, microorganisms, organic matter and plants. In: Edwards CA (ed) Earthworm ecology, 2nd edn. CRC Press LLC, Boca Raton, pp 213–239

    Google Scholar 

  • Brown BA, Mitchell MJ (1981) Role of the earthworm, Eisenia foetida, in affecting survival of Salmonella enteriditis ser. typhimurium. Pedobiologia 22:434–438

    Google Scholar 

  • Brown GG, Barois I, Lavelle P (2000) Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol 36:177–198

    Article  Google Scholar 

  • Byzov BA, Khomyakov NV, Kharin SA, Kurakov AV (2007) Fate of soil bacteria and fungi in the gut of earthworms. Eur J Soil Biol 43:S149–S156

    Article  CAS  Google Scholar 

  • Byzov BA et al (2009) Culturable microorganisms from the earthworm digestive tract. Microbiology 78:360–368

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL, Okorokova FAR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence and plasma membrane H + − ATPase activity in maize roots. Plant Physiol 130:1951–1957

    Article  CAS  Google Scholar 

  • Citernesi U, Neglia R, Seritti A, Lepidi AA, Filippi C, Bagnoli G, Nuti MP, Galluzzi R (1977) Nitrogen fixation in the gastro-enteric cavity of soil animals. Soil Biol Biochem 9:71–72

    Article  Google Scholar 

  • Contreras E (1980) Studies on the intestinal actinomycete flora of Eisenia lucens (Annelida, Oligochaeta). Pedobiologia 20:411–416

    Google Scholar 

  • Cowan IMT (1951) The diseases and parasites of big game mammals of western Canada. Proc Annul Br Columbia Game Conv 5:37–64

    Google Scholar 

  • Curry JP, Schmidt O (2007) The feeding ecology of earthworms – a review. Pedobiologia 50:463–477

    Article  CAS  Google Scholar 

  • Daniel O (1991) Leaf litter consumption and assimilation by juveniles of Lumbricus terrestris (Oligochaeta, Lumbricidae) under different environmental conditions. Biol Fertil Soils 12:202–208

    Article  Google Scholar 

  • Daniel O, Anderson JM (1992) Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm Lumbricus rubellus Hoffmeister. Soil Biol Biochem 24:465–470

    Article  Google Scholar 

  • Davidson SK, Stahl DA (2006) Transmission of nephridial bacteria of the earthworm Eisenia fetida. Appl Environ Microbiol 72:769–775

    Article  CAS  Google Scholar 

  • Davidson SK, Stahl DA (2008) Selective recruitment of bacteria during embryogenesis of an earthworm. ISME J 2:510–518

    Article  Google Scholar 

  • Davidson SK, Powell RJ, Stahl DA (2010) Transmission of a bacterial consortium in Eisenia fetida egg capsules. Environ Microbiol 12:2277–2288

    CAS  Google Scholar 

  • Devliegher W, Verstraete W (1995) Lumbricus terrestris in a soil core experiment: nutrient-enrichment processes (NEP) and gut-associated processes (GAP) and their effect on microbial biomass and microbial activity. Soil Biol Biochem 27:1573–1580

    Article  CAS  Google Scholar 

  • Devliegher W, Verstraete W (1997) Microorganisms and soil physicochemical conditions in the drilosphere of Lumbricus terrestris. Soil Biol Biochem 29:1721–1729

    Article  CAS  Google Scholar 

  • Diaz Cosín DJ, Ruiz MP, Garvín MH, Ramajo M, Trigo D (2002) Gut load and transit time in Hormogaster elisase (Oligochaeta, Hormogastridae) in laboratory cultures. Eur J Soil Biol 38:179–182

    Google Scholar 

  • Dickschen F, Topp W (1987) Feeding activities and assimilation efficiencies of Lumbricus rubellus (Lumbricidae) on a plant-only diet. Pedobiologia 30:31–37

    Google Scholar 

  • Domínguez J (2004) State of the art and new perspectives in vermicomposting research. In: Edwards CA (ed) Earthworm ecology, 2nd edn. CRC Press, Boca Raton, pp 401–425

    Chapter  Google Scholar 

  • Domsch KH, Banse HJ (1972) Mykologische Untersuchungen an Regenwurmexkrementen. Soil Biol Biochem 4:31–38

    Article  Google Scholar 

  • Edwards CA (2004) Earthworm ecology, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • Edwards CA, Fletcher KE (1988) Interactions between earthworms and microorganisms in organicmatter breakdown. Agric Ecosyst Environ 24:235–247

    Article  Google Scholar 

  • Edwards CA, Lofty R (1977) The biology of earthworms. Chapmann and Hall, London

    Book  Google Scholar 

  • Egert M et al (2004) Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae). FEMS Microbiol Ecol 48:187–197

    Article  CAS  Google Scholar 

  • Flack FM, Hartenstein R (1984) Growth of the earthworm Eisenia foetida on microorganisms and cellulose. Soil Biol Biochem 16:491–495

    Article  CAS  Google Scholar 

  • Flegel M, Schrader S (2000) Importance of food quality on selected enzyme activities in earthworm casts (Dendrobaena octaedra, Lumbricidae). Soil Biol Biochem 32:1191–1196

    Article  CAS  Google Scholar 

  • Ghosh M, Chattopadhyay GN, Baral K (1999) Transformation of phosphorus during vermicomposting. Bioresour Technol 69:149–154

    Article  CAS  Google Scholar 

  • Gonzalez CL (1990) Determinación de la Influencia de Pontoscolex corethrurus (Oligochaeta) Sobre las Poblaciones Microbianas Presentes en un Sembradio de Maiz de la Región de Gomez Farías, Tamaulipas, thesis, Universidad Nacional Autónoma de México, Los Reyes Iztacala

    Google Scholar 

  • Hand PW, Hayes A, Frankland JC, Satchell JE (1988) Vermicomposting of cow slurry. Pedobiologia 31:199–209

    Google Scholar 

  • Hartenstein R, Amico L (1983) Production and carrying capacity for the earthworm Lumbricus terrestris in culture. Soil Biol Biochem 15:51–54

    Article  Google Scholar 

  • Hartenstein R, Hartenstein F (1981) Physicochemical changes effected in activated sludge by the earthworm Eisenia fetida. J Environ Qual 10(3):377–381

    Google Scholar 

  • Hendriksen NB (1991) Gut load and food-retention time in the earthworms Lumbricus festivus and L. castaneus: a field study. Biol Fertil Soils 11:170–173

    Article  Google Scholar 

  • Horn MA, Schramm A, Drake HL (2003) The earthworm gut: an ideal habitat for ingested N2Oproducing microorganisms. Appl Environ Microbiol 69:1662–1669

    Article  CAS  Google Scholar 

  • Horn MA, Ihseen J, Matthies C, Schramm A, Acker G, Drake HL (2005) Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov., and Paenibacillus terrae strain MH72, N2O producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol 55:1225–1265

    Google Scholar 

  • Hotchkiss M, Waksman SA (1936) Correlative studies of microscopic and plate methods for evaluating the bacterial population of the sea. J Bacteriol 32:423–432

    CAS  Google Scholar 

  • Hutuchinson A, Kamela M (1956) The effects of earthworms on the dispersal of soil fungi. J Soil Sci 7:213

    Article  Google Scholar 

  • Jayasinghe BATD, Parkinson D (2009) Earthworms as the vectors of actinomycetes antagonistic to litter decomposer fungi. Appl Soil Ecol 43:1–10

    Article  Google Scholar 

  • Jensen HL (1931) The fugus flora of the soil. Soil Sci 1:217–316

    Google Scholar 

  • Jolly JM, Lappin-Scott HM, Anderson JM, Clegg CD (1993) Scanning electron microscopy of the gut microflora of two earthworms: Lumbricus terrestris and Octolasion cyaneum. Microb Ecol 26:235–245

    Article  CAS  Google Scholar 

  • Jyotsana P, Vijayalakshmi K, Prasanna ND, Shaheen SK (2010) Isolation, characterization of Cellulase producing Lysinibacillus Sphaericus (MTCC no. 9468) from gut of Eisenia foetida. Bioscan 6(2):325–327

    Google Scholar 

  • Karsten GR, Drake HL (1995) Comparative assessment of the aerobic and anaerobic microfloras of earthworm guts and forest soils. Appl Environ Microbiol 61:1039–1044

    CAS  Google Scholar 

  • Karsten GR, Drake HL (1997) Denitrifying bacteria in the earthworm gastrointestinal tract and in vivo emission of nitrous oxide (N2O) by earthworms. Appl Environ Microbiol 63:1878–1882

    CAS  Google Scholar 

  • Khambata R, Bhat V (1953) Studies on a new oxalate decomposing bacterium, Pseudomonas oxalaticus. J Bacteriol 66:505

    CAS  Google Scholar 

  • Knapp BA et al (2009) Diet-related composition of the gut microbiota of Lumbricus rubellus as revealed by a molecular fingerprinting technique and cloning. Soil Biol Biochem 41:2299–2307

    Article  CAS  Google Scholar 

  • Knollenberg WG, Merritt RW, Lawson DL (1985) Consumption of leaf litter by Lumbricus terrestris (Oligochaeta) on a Michigan woodland floodplain. Am Midl Nat 113:1–6

    Article  Google Scholar 

  • Kristufek V, Ravasz K, Pizl V (1993) Actinomycete communities in earthworm guts and surrounding soil. Pedobiologia 37:379–384

    Google Scholar 

  • Lavelle P (1988) Earthworms and the soil system. Biol Fertil Soils 6:237–251

    Article  Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic Publishers, Dordrecht, p 654

    Book  Google Scholar 

  • Lavelle P, Lattaud C, Trigo D, Barois I (1995) Mutualism and biodiversity in soils. Plant Soil 170:23–33

    Article  CAS  Google Scholar 

  • Lee KE (1985) Earthworms: their ecology and relationships with soils and land use. Academic, Sydney

    Google Scholar 

  • Lund MB et al (2010) Diversity and host specificity of the Verminephrobacter-earthworm symbiosis. Environ Microbiol 12:2142–2151

    CAS  Google Scholar 

  • Macfarlane I (1952) Factors affecting the survival of its assessment by a host test. Ann Appl Biol 39:239–256

    Article  Google Scholar 

  • Martin A, Lavelle P (1992) Effect of soil organic matter quality on its assimilation by Millsonia anomala, a tropical geophagous earthworm. Soil Biol Biochem 24:1535–1538

    Article  Google Scholar 

  • Martin A, Cortez J, Barois I, Lavelle P (1987) Les mucus de Ver de terre: moteur de leurs interactions avec la microflore. Rev Ecol Biol Sol 24:549–558

    Google Scholar 

  • McLean MA, Parkinson D (2000) Field evidence of the effects of the epigeic earthworm Dendrobaena octaedra on the microfungal community in pine forest floor. Soil Biol Biochem 32:351–360

    Article  CAS  Google Scholar 

  • Michel K, Matzner E (2002) Nitrogen content of forest floor Oa layers affects carbon pathways and nitrogen mineralization. Soil Biol Biochem 34:1807–1813

    Article  CAS  Google Scholar 

  • Mishra CSK, Chhotaray D, Mohapatra PK (2011) Diversity of bacteria and fungi in the gut and cast of the Tropical earthworm Glyphodrillus tuberosus isolated from conventional and organic rice fields. J Pharmacol Toxiol 6(3):303–311

    Article  Google Scholar 

  • Monroy F, Aira M, Dominguez J (2009) Reduction of total coliform numbers during vermicomposting is caused short-term direct effects of earthworms on microorganisms and depends on the dose of application of pig slurry. Sci Total Environ 407:5411–5416

    Article  CAS  Google Scholar 

  • Moody S, Briones MJI, Piearce TG, Dighton J (1995) Selective consumption of decomposing wheat straw by earthworms. Soil Biol Biochem 27:1209–1213

    Article  CAS  Google Scholar 

  • Morgan MH (1988) The role of microorganisms in the nutrition of Eisenia foetida. In: Edwards CA, Neuhauser EF (eds) Earthworms in waste and environmental management. SPB Academic Publishing, The Hague, p 71

    Google Scholar 

  • Munnoli PM, Da Silva JAT, Saroj B (2010) Dynamics of the soil-earthworm-plant relationship: a review. Dyn Soil, Dyn Plant 4:1–21

    Google Scholar 

  • Nechitaylo TY, Yakimov MM, Godinho M, Timmis KN, Belogolova E, Byzov BA (2010) Effect of the earthworms Lumbricus terrestris and Aporrectodea caliginosa on bacterial diversity in soil. Microbial Ecol 59:574–587

    Article  Google Scholar 

  • Parle JN (1963) Microorganisms in the intestines of earthworms. J Gen Microbiol 31:1–11

    Article  Google Scholar 

  • Parthasarathi K, Ranganathan LS (1999) Longevity of microbial and enzyme activity and their influence on NPK content in pressmud vermicasts. Eur J Soil Biol 35(2):107–113

    Google Scholar 

  • Parthasarathi K, Ranganathan LS, Anandi V, Zeyer J (2007) Diversity of microflora in the gut and casts of tropical composting earthworms reared on different substrates. J Environ Biol 28(1):87–97

    CAS  Google Scholar 

  • Pathma J, Sakthivel N (2012) Microbial diversity of vermicomposts bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 1:1–26

    Article  Google Scholar 

  • Pedersen JC, Hendriksen NB (1993) Effect of passage through the intestinal tract of detritivore earthworms (Lumbricus spp.) on the number of selected Gram-negative and total bacteria. Biol Fertil Soils 16:227–232

    Article  Google Scholar 

  • Petersen H, Luxton MA (1982) A comparative analysis of soil fauna populations and their role in decomposition process. Oikos 39:287–388

    Google Scholar 

  • Piearce TG (1978) Gut contents of some lumbricid earthworms. Pedobiologia 18:153–157

    Google Scholar 

  • Piearce TG, Phillips MJ (1980) The fate of ciliates in the earthworm gut: an in vitro study. Microb Ecol 5:313–332

    Article  CAS  Google Scholar 

  • Pinel N, Davidson SK, Stahl DA (2008) Verminephrobacter eiseniae gen. nov., sp. nov., a Nephridial symbiont of the earthworm Eisenia foetida (Savigny). Int J Syst Evol Microbiol 58:2147–2157

    Article  CAS  Google Scholar 

  • Pizl V, Novokova A (1993) Interactions between microfungi and Eisenia Andrei (Oligochaeta) during cattle manure vermicomposting. Pedobiologia 47:895–899

    Google Scholar 

  • Ranganathan LS, Parthasarathi K (1999) Precocious development of Lampito mauritii and Eudrilus engeniae reared in pressmud. Pedobiologia 43:904–908

    Google Scholar 

  • Rao BR, Karuna Sagar I, Bhat JV (1983) Enterobacter aerogenes infection of Hoplochaetella suctoria. In: Earthworm ecology. Springer, Dordrecht, pp 383–391

    Google Scholar 

  • Reddell P, Spain AV (1991a) Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol Biochem 23:767–774

    Article  Google Scholar 

  • Reddell P, Spain AV (1991b) Transmission of infective Frankia (Actinomycetales) propagules in casts of the endogeic earthworm Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae). Soil Biol Biochem 23:775–778

    Article  Google Scholar 

  • Ruschmann G (1953) Antibiosen and sybiosen von bodenorganismen and ihre Bedeutung fur die Bodenfruchtbarkeit. IV. Die symbiotischen and antibiotischen Regenwurm-Aktinomyzeten. 2. Acker-u PJEBau 97:101

    CAS  Google Scholar 

  • Russell EW (1950) Soil conditions and plant growth, 8th edn. Longmans, Green and Co. Ltd., London, p 635

    Google Scholar 

  • Sampedro L, Whalen JK (2007) Changes in the fatty acid profiles through the digestive tract of the earthworm Lumbricus terrestris L. Appl Soil Ecol 35:226–236

    Article  Google Scholar 

  • Sampedro L, Jeannotte R, Whalen JK (2006) Trophic transfer of fatty acids from gut microbiota to the earthworm Lumbricus terrestris L. Soil Biol Biochem 38:2188–2198

    Article  CAS  Google Scholar 

  • Scheu S (1987) Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae). Biol Fertil Soils 5:230–234

    Article  Google Scholar 

  • Scheu S (1992) Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biol Biochem 24:1113–1118

    Article  Google Scholar 

  • Schmidt O, Doube BM, Ryder MH, Killham K (1997) Population dynamics of Pseudomonas corrugate 2140R lux8 in earthworm food and in earthworm casts. Soil Biol Biochem 29:523–528

    Article  CAS  Google Scholar 

  • Schonholzer F, Hahn D, Zeyer J (1999) Origins and fate of fungi and bacteria in the gut of Lumbricus terrestris L. studied by image analysis. FEMS Microbiol Ecol 28:235–248

    Article  CAS  Google Scholar 

  • Schonholzer F, Hahn D, Zarda B, Zeyer J (2002) Automated image analysis and in situ hybridization as tools to study bacterial populations in food resources, gut and cast of Lumbricus terrestris L. J Microbiol Methods 48(1):53–68

    Google Scholar 

  • Schramm A et al (2003) Acidovorax-like symbionts in the nephridia of earthworms. Environ Microbiol 67:804–809

    Article  CAS  Google Scholar 

  • Shankar T, Mariappan V, Isaiarasu L (2011) Cellulolytic bacteria from the midgut of the popular composting earthworm, Eudrilus eugeniae (Kinberg). World J Zool 6(2):192–198

    Google Scholar 

  • Sharpley AN, Syers JK (1976) Potential role of earthworm casts for the phosphorous enrichment of runoff waters. Soil Biol Biochem 8:341–346

    Article  CAS  Google Scholar 

  • Singleton DR, Hendrixb PF, Colemanb DC, Whitmana WB (2003) Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biol Biochem 35:1547–1555

    Article  CAS  Google Scholar 

  • Sinha RK, Agarwal S, Chauhan K, Valani D (2010) The wonders of earthworms and its vermicompost in farm production: Charles Darwin’s ‘friends of farmers’, with potential to replace destructive chemical fertilizers from agriculture. Agric Sci 1:76–94

    Google Scholar 

  • Smith NR, Clark FE (1938) Motile colonies of Bacillus alnei and other bacteria. J Bacteriology 35:59–60

    Google Scholar 

  • Thorpe IS, Killham K, Prosser JI, Glover LA (1993) Novel method for the study of the population dynamics of a genetically modified microorganism in the gut of the earthworm Lumbricus terrestris. Biol Fertil Soils 15:55–59

    Article  Google Scholar 

  • Tillinghast EK, O’Donnell R, Eves D, Calvert E, Taylor J (2001) Water-soluble luminal contents of the gut of the earthworm Lumbricus terrestris L. and their physiological significance. Comp Biol Physiol A 129:345–353

    Article  CAS  Google Scholar 

  • Tiunov AV, Scheu S (2000) Microfungal communities in soil, litter and casts of Lumbricus terrestris L. (Lumbricidae): a laboratory experiment. Appl Soil Ecol 14:17–26

    Article  Google Scholar 

  • Tiwari SC, Tiwari BK, Mishra RR (1989) Microbial populations, enzyme activities and nitrogen, phosphorous, potassium enrichment in earthworm casts and in the surrounding soil of pine apple plantation. Biol Fertil Soils 8:178–182

    Article  Google Scholar 

  • Tiwari SC, Tiwari BK, Mishra RR (1990) Microfungal species associated with the gut content and casts of Drawida assamensis Gates. Proc Indian Acad Sci (Plant Sci) 100:379–382

    Google Scholar 

  • Toyota K, Kimura M (1994) Earthworms disseminate a soil-borne plant pathogen, Fusarium oxysporum f. sp. raphani. Biol Fertil Soils 18:32–36

    Article  Google Scholar 

  • Toyota K, Kimura M (2000) Microbial community indigenous to the earthworm Eisenia fetida. Biol Fertil Soils 31:187–190

    Article  Google Scholar 

  • Trigo D, Lavelle P (1993) Changes in respiration rate and some physicochemical properties of soil during gut transit through Allolobophora molleri (Lumbricidae, Oligochaeta). Biol Fertil Soils 15:185–188

    Article  Google Scholar 

  • Trigo D, Lavelle P (1995) Soil changes during gut transit through Octolasion lacteum Oerly (Lumbricidae, Oligochaeta). Acta Zool Fenn 196:129–131

    Google Scholar 

  • Trigo D et al (1999) Mutualism between earthworms and soil microflora. Pedobiologia 43:866–873

    Google Scholar 

  • Vinceslas-Akpa M, Loquet M (1995) Observation in situ de la microflore liée au tube digestif de Eisenia fetida andrei (Lumbricidae). Eur J Soil Biol 31:101–110

    Google Scholar 

  • Vivas A, Moreno B, Garcia-Rodriguez S, Benitez E (2009) Assessing the impact of composting and vermicomposting on bacterial community size and structure, and functional diversity of an olive-mill waste. Bioresour Technol 100:1319–1326

    Article  CAS  Google Scholar 

  • Zhang BG, Li GT, Shen TS, Wang JK, Sun Z (2000) Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia foetida. Soil Biol Biochem 32:2055–2062

    Article  CAS  Google Scholar 

  • Zirbes L, Thonart P, Haubruge E (2012) Microscale interactions between earthworms microorganisms, a review. Biotechnol Agron Soc Environ 16:125–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

S, K.K., Ibrahim, M.H., Quaik, S., Ismail, S.A. (2016). Microbial Ecology Associated with Earthworm and Its Gut. In: Prospects of Organic Waste Management and the Significance of Earthworms. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-319-24708-3_6

Download citation

Publish with us

Policies and ethics