Skip to main content

General Introduction to Earthworms, Their Classifications, and Biology

  • Chapter
  • First Online:
Prospects of Organic Waste Management and the Significance of Earthworms

Abstract

Charles Darwin described earthworms as the ‘unheralded soldiers of mankind’, and Aristotle called them as the ‘intestine of earth’, as they could digest a wide variety of organic materials (Darwin (1881) The formation of vegetable mould through the action of worms, with observations on their habitats. Murray, London, p 326). Before Darwin’s book was published, earthworms were commonly considered soil-inhabiting crop pests. His views on the beneficial aspects of earthworms were supported and expanded subsequently by other contemporary scientists such as (Muller (1878) Tidsskrift Skogbruk 3:124; Urquhart (1887) Trans NZ Inst 19:119–123), and many others. Earthworms are an important link in the food chain of many invertebrate and vertebrate animals (Macdonald (1983) Predation on earthworms by terrestrial vertebrates. In: Satchell JE (ed) Earthworm ecology from Darwin to vermiculture. Chapman & Hall, London, pp 393–414). Early humans used earthworms both as food and as baits in hunting and fishing. Research on potential of earthworms in processing organic wastes began in Germany (Graff and Makeshin (1980) Crop yield of ryegrass influenced by the excretions of three earthworm species. Pedobiologia 20:176–180) and continued in United States. Appelhof (Appelhof (1982) Worms eat my garbage. Flower Press, Kalamazoo) summarized the extensive research into the breakdown of sewage bio-solids by earthworms and the overall commercial potential of vermiculture up to that date. Research on using earthworms to break down animal and vegetable wastes and also to produce earthworm protein that could be used in fish farming for animal feeds began in 1980s (Edwards et al. (1985) The use of earthworms for composting farm wastes. In: Gasser JKR (ed) Composting of agricultural and other wastes. Elsevier, Amsterdam, pp 229–242; Edwards (1998) The use of earthworms in the breakdown and management of organic wastes. In: Edwards CA (ed) Earthworm ecology. CRC Press, Boca Raton, pp 327–354). Various researchers have examined the potential utilization of earthworm-processed wastes, commonly referred to as vermicomposts, in the horticultural and agricultural industries. Whether used as soil additives or as components of horticultural media, vermicomposts usually enhanced seedling growth and development, and increased productivity of a wide variety of crops. Enhancement in plant growth and productivity has been attributed to the physical and chemical characteristics of the processed materials. Several epigeic earthworms, e.g., Eisenia fetida (Savigny), Perionyx excavatus (Perrier), Perionyx sansibaricus (Perrier), and Eudrilus eugeniae Kinberg have been identified as detritus feeders and can be used potentially to minimize the anthropogenic wastes from different sources. The potential of composting earthworms, i.e., Eisenia fetida (Savigny), to manage organic waste resources is well established. It is considered as a key organism of vermicomposting industries in many parts of the world. Several workers had reported the vermicomposting potential of E. fetida by using a variety of waste materials such as cattle dung (Kale. Earthworms: nature’s gift for utilization of organic wastes. In: Edwards CA (ed) Earthworm ecology. Soil and Water Conservation Society/St. Lucie Press, Ankeny/New York, pp 355–373, 1998; Garg et al. Biores Technol 97:391–395, 2006; Reinecke et al. Soil Biol Biochem 24:1295–1307, 1992), household waste (Kale. Earthworms: nature’s gift for utilization of organic wastes. In: Edwards CA (ed) Earthworm ecology. Soil and Water Conservation Society/St. Lucie Press, Ankeny/New York, pp 355–373, 1998), sewage sludge (Gupta and Garg. J Hazard Mater 153:1023–1030, 2008; Suthar. Int J Environ Waste Manage 2:84–101, 2008), industrial waste (Suthar. Environmentalist 27:329–335, 2007; Garg and Kaushik. Biores Technol 96:1063–1071, 2005), etc. (Suthar. Environmentalist 27:329–335, 2007) worked on the influence of different food sources on growth and reproduction performance of composting epigeic: Eudrilus eugeniae, P. excavatus and P. sansbaricus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aira M, Dominguez J (2009) Microbial and nutrient stabilization of two animal manures after the transit through the gut of the earthworm Eisenia fetida. J Hazard Mater 161:1234–1238

    Article  CAS  Google Scholar 

  • Aira M, Monroy F, Dominguez J (2009) Changes in bacterial numbers and microbial activity of pig slurry during gut transit of epigeic and anecic earthworms. J Hazard Mater 162:1404–1407

    Article  CAS  Google Scholar 

  • Alakukku L, Ahokas J, Ristolainen A (2002) Response of clay soil macroporosity to stress caused by tracked tractors. In: Pagliai M, Jones R (eds) Sustainable land management. Environmental protection: a soil physical approach, Advances in GeoEcology 35. Catena Verlag, Reiskichen, pp 319–330

    Google Scholar 

  • Ansari A, Ismail SA (2012) Earthworms and vermiculture biotechnology. In: Kumar S (ed) Management of organic waste. InTech, Rijeka

    Google Scholar 

  • Appelhof M (1982) Worms eat my garbage. Flower Press, Kalamazoo

    Google Scholar 

  • Bano K, Kale RD (1988) Reproductive potential and existence of endogenous rhythm in reproduction of earthworm Eudrilus eugeniae. Proc Zool Soc (Calcutta) 38:9–14

    Google Scholar 

  • Blakemore RJ (1994) Earthworms of south-east Queensland and their agronomic potential in brigalow soils. Phd thesis, University of Queensland, p 605

    Google Scholar 

  • Bouche MB (1977) Strate’gies lombriciennes. In: Lohm U, Persson T (eds) Soil organisms components of ecosystems. Biol Bull, Stockholm 25, pp 122–132

    Google Scholar 

  • Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170:209–231

    Article  CAS  Google Scholar 

  • Brown GG, Barois I, Lavelle P (2000) Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol 36:177–198

    Article  Google Scholar 

  • Capowiez Y, Pierret A, Daniel O, Monestiez P, Kretzschma A (1998) 3D skeleton reconstructions of natural earthworm burrow systems using CAT scan images of soil cores. Biol Fertil Soils 27:51–59

    Article  Google Scholar 

  • Casenave de Sanfilippo E, Arguello JA, Abdala G, Orioli GA (1990) Content of auxin-inhibitor and gibberellin-like substances in humic acids. Biol Plant 32:346–351

    Article  CAS  Google Scholar 

  • Cluzeau D, Fayolle L (1989) Croissance et fécondité compareés de Dendrobaena rubida tenuis (Eisen, 1874), Eisenia andrei (Bouché, 1972) et Lumbricus rubellus rubellus (Hoffmeister, 1843) (Oligochaeta, Lumbricidae) en élevage contrôlé. Rev Ecol Biol Sol 26:111–121

    Google Scholar 

  • Cotton DCF, Curry JP (1980) The response of earthworm populations (Oligochaeta, Lumbricidae) to high applications of pig slurry. Pedobiologia 19:425–438

    Google Scholar 

  • Curry JP, Schmidt O (2007) The feeding ecology of earthworms – a review. Pedobiologia 50:462–477

    Article  Google Scholar 

  • Darwin C (1881) The formation of vegetable mould through the action of worms, with observations on their habitats. Murray, London, p 326

    Book  Google Scholar 

  • Dominguez J, Edwards CA (1997) Effects of stocking rate and moisture content on the growth and maturation of Eisenia andrei (Oligochaeta) in pig manure. Soil Biol Biochem 29:743–746

    Article  CAS  Google Scholar 

  • Dominguez J, Edwards CA (2011) Biology and ecology of earthworm species used for vermicomposting. In: Edwards CA, Arancon NQ, Sherman R (eds) Vermiculture technology. CRC Press, Taylor & Francis Group, Baton Raton, pp 27–40

    Google Scholar 

  • Dominguez J, Briones MJI, Mato S (1997) Effect of the diet on growth and reproduction of Eisenia andrei (Oligochaeta, Lumbricidae). Pedobiologia 41:566–576

    Google Scholar 

  • Dominguez J, Edwards CA, Ashby J (2001) The biology and population dynamics of Eudrilus eugeniae (Kinberg) (Oligochaeta) in cattle waste solids. Pedeobiologia 45:341–353

    Article  Google Scholar 

  • Dominguez J, Parmelee RW, Edwards CA (2003) Interactions between Eisenia andrei (Oligochaeta) and nematode populations during vermicomposting. Pedobiologia 47:53–60

    Article  Google Scholar 

  • Edwards CA (1998) The use of earthworms in the breakdown and management of organic wastes. In: Edwards CA (ed) Earthworm ecology. CRC Press, Boca Raton, pp 327–354

    Google Scholar 

  • Edwards CA (ed) (2004) Earthworm ecology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman & Hall, London, p 426

    Google Scholar 

  • Edwards CA, Lofty JR (1977) Biology of earthworms, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Edwards CA, Neuhauser EF (eds) (1988) Earthworms in waste and environmental management. SPB Academic Publishing, The Hague, pp 21–31

    Google Scholar 

  • Edwards CA, Burrows I, Fletcher KE, Jones BA (1985) The use of earthworms for composting farm wastes. In: Gasser JKR (ed) Composting of agricultural and other wastes. Elsevier, Amsterdam, pp 229–242

    Google Scholar 

  • Edwards WM, Shipitalo MJ, Owens LB, Norton LD (1989) Water and nitrate movement in earthworm burrows within long-term no-till cornfields. J Soil Water Conserv 44:240–243

    Google Scholar 

  • Elvira C, Dominguez J, Mato S (1996) The growth and reproduction of Lumbricus rubellus and Dendrobaena rubida in cow manure. Mixed cultures with Eisenia andrei. Appl Soil Ecol 5:97–103

    Article  Google Scholar 

  • Elvira C, Sampedro L, Benitez E, Nogales R (1997) Vermicomposting of sludges from paper mill and dairy industries with Eisenia Andrei: a pilot scale study. Bioresour Technol 63:205–211

    Google Scholar 

  • Friend JJ, Chan KY (1995) Influence of cropping on the population of a native earthworm and consequent effects on hydraulic properties of vertisols. Aust J Soil Res 33:995–1006

    Article  Google Scholar 

  • Gajalakhsmi S, Abbasi SA (2004) Neem leaves as a source of fertilizer-cum-pesticide vermicompost. Bioresour Technol 92:291–296

    Google Scholar 

  • Garg VK, Kaushik P (2005) Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia fetida. Biores Technol 96:1063–1071

    Article  CAS  Google Scholar 

  • Garg P, Gupta A, Satya S (2006) Vermicomposting of different types of waste using Eisenia foetida: a comparative study. Biores Technol 97:391–395

    Article  CAS  Google Scholar 

  • Gates GE (1972) Burmese earthworms. An introduction to the systematics and biology of megadrile oligochaetes with special reference to Southeast Asia. Trans Am Philos Soc N S 62:1–326

    Article  Google Scholar 

  • Golabi MH, Radcliffe DE, Hargrove WL, Tollner EW (1995) Macropore effects in conventional and no-tillage soils. J Soil Water Conserv 50:205–210

    Google Scholar 

  • Graff O (1974) Gewinnung von Biomasse aus Abfallstoffen durch Kultur des Kompostregenwurms Eisenia foetida (Savigny 1826). Landbauforsch Volk 24:137–142

    Google Scholar 

  • Graff O, Makeshin F (1980) Crop yield of ryegrass influenced by the excretions of three earthworm species. Pedobiologia 20:176–180

    Google Scholar 

  • Gupta R, Garg VK (2008) Stabilization of primary sludge during vermicomposting. J Hazard Mater 153(3):1023–1030

    Article  CAS  Google Scholar 

  • Hallatt L, Reinecke AJ, Viljoen SA (1990) The life cycle of the oriental compost worm Perionyx excavatus (Oligochaeta). S Afr J Zool 25:41–45

    Article  Google Scholar 

  • Hallatt L, Reinecke AJ, Viljoen SA (1992) Moisture requirements in the life cycle of Perionyx excavatus (Oligochaeta). Soil Biol Biochem 24:1333–1340

    Article  Google Scholar 

  • Hand P, Hayes WA, Frankland JC, Satchell JE (1988) Vermicomposting of cow slurry. Pedobiologia 31:199–209

    Google Scholar 

  • Hartenstein R, Neuhauser EF, Kaplan DL (1979) The reproductive potential of the earthworm Eisenia foetida. Oecologia 43:329–340

    Article  Google Scholar 

  • Hartenstein F, Hartenstein E, Hartenstein R (1981) Gut load and transit-time in the earthworm Eisenia foetida. Pedobiologia 22:5–20

    Google Scholar 

  • Hickman CP (2005) Integrated principles of zoology, 13th edn. Mcgraw-Hill (Tx), pp 369–375

    Google Scholar 

  • Ismail SA (2005) The earthworm book. Other India Press, Mapusa, p 101

    Google Scholar 

  • Jegou D, Cluzeau D, Wolf HJ, Gandon Y, Tréhen P (1998) Assessment of the burrow system of Lumbricus terrestris, Aporrectodea giardi, and Aporrectodea caliginosa using X-ray computed tomography. Biol Fertil Soils 26:116–121

    Google Scholar 

  • Joergensen RG, Kuntzel H, Scheu S, Seitz D (1998) Movement of faecal indicator organisms in earthworm channels under a loamy arable and grassland soil. Appl Soil Ecol 8:1–10

    Article  Google Scholar 

  • Jolly JM, Lappinscott HM, Anderson JM, Clegg CD (1993) Scanning electron-microscopy of the gut microflora of 2 earthworms – Lumbricus terrestris and Octolasion cyaneum. Microb Ecol 26:235–245

    Article  CAS  Google Scholar 

  • Jones LA, Rutledge EM, Scott HD, Wolf DC, Teppen BJ (1993) Effects of two earthworm species on movement of septic tank effluent through soil columns. J Environ Qual 22:52–57

    Article  Google Scholar 

  • Joschko M, Sochtig W, Larink O (1992) Functional relationship between earthworm burrows and soil water movement in column experiments. Soil Biol Biochem 24:1545–1547

    Article  Google Scholar 

  • Kale RD (1998) Earthworms: nature’s gift for utilization of organic wastes. In: Edwards CA (ed) Earthworm ecology. Soil and Water Conservation Society/St. Lucie Press, Ankeny/New York, pp 355–373

    Google Scholar 

  • Kale RD, Bano K, Krishnamoorthy RW (1982) Potential of Perionyx excavatus for utilizing organic wastes. Pedobiologia 23:419–426

    Google Scholar 

  • Kaplan DL, Hartenstein R, Neuhauser EF, Malecki MR (1980) Physiochemical requirements in the environment of earthworm Eisenia foetida. Soil Biol Biochem 12:347–352

    Article  Google Scholar 

  • Kiyasudeen KS, Jessy RS, Ibrahim MH (2014) Earthworm’s gut as reactor in vermicomposting process: a mini review. Int J Sci Res Publ 4(7):1–6

    Google Scholar 

  • Konig H, Varma A (2006) Intestinal microorganisms of termites and other Invertebrates. Volume 6 of soil biology. Springer Science & Business Media, Berlin/New York, p 483

    Book  Google Scholar 

  • Lachnicht SL, Hendrix PF (2001) Interaction of earthworm Diplocardia mississippiensis (Megascolecidae) with microbial and nutrient dynamics in subtropical Spodosol. Soil Biol Biochem 33:1411–1417

    Article  CAS  Google Scholar 

  • Langmaack M, Schrader S, Rapp-Bernhardt U, Kotzke K (1999) Quantitative analysis of earthworm burrow systems with respect to biological soil-structure regeneration after soil compaction. Biol Fertil Soils 28:219–229

    Article  Google Scholar 

  • Lavelle P (1988) Earthworm activities and the soil system. Biol Fertil Soils 6(3):237–251

    Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer, Dordrecht

    Book  Google Scholar 

  • Lavelle P, Barois I, Blanchart E, Brown GG, Brussaard L, Decaëns T, Fragoso C, Jiménez JJ, KaKajondo K, Martínez MA, Moreno AG, Pashanasi B, Senapati BK, Villenave C (1998) Earthworms as a resource in tropical agroecosystems. Nat Resour 34:26–41

    Google Scholar 

  • Lavelle P, Brussard L, Hendrix P (eds) (1999) Earthworm management in tropical ecosystems. CABI International, Wallingford

    Google Scholar 

  • Lee KE (1985) Earthworms: their ecology and relationships with soils and land use. Academic, New York

    Google Scholar 

  • Loehr RC, Neuhauser EF, Malecki R (1985) Factors affecting the vermi-stabilization process. Temperature, moisture content and polyculture. Water Res Technol 19:1311–1317

    Article  Google Scholar 

  • Macdonald DW (1983) Predation on earthworms by terrestrial vertebrates. In: Satchell JE (ed) Earthworm ecology from Darwin to vermiculture. Chapman & Hall, London, pp 393–414

    Chapter  Google Scholar 

  • Monroy F, Aira M, Dominguez J (2009) Reduction of total coliform numbers during vermicomposting is caused short-term direct effects of earthworms on microorganisms and depends on the dose of application of pig slurry. Sci Total Environ 407:5411–5416

    Article  CAS  Google Scholar 

  • Muller PE (1878) Studier over Skovjord I. Om Bogemuld od Bogemor paa Sand og Ler. Tidsskrift Skogbruk 3(1):124

    Google Scholar 

  • Munnoli PM, Teixeira da Silva JA, Bhosle S (2010) Dynamics of the soil-earthworm-plant relationship: a review. Dyn Soil Dyn Plant 4:1–25

    Google Scholar 

  • Neuhauser EF, Kaplan DL, Malecki MR, Hartenstein R (1980) Materials supporting weight gain by the earthworm E. foetida in waste conversion systems. Agric Wastes 2:43–60

    Article  Google Scholar 

  • Neuhauser EF, Loehr RC, Malecki MR (1988) The potential of earthworms for managing sewage sludge. In: Edwards CA, Neuhauser EF (eds) Earthworms in waste and environmental management. SPB Academic Publishing, The Hague, pp 9–20

    Google Scholar 

  • Parkin TB, Berry EC (1999) Microbial nitrogen transformations in earthworm burrows. Soil Biol Biochem 31:1765–1771

    Article  CAS  Google Scholar 

  • Parle JN (1963) Microorganisms in the intestine of earthworms. J Gen Microbiol 31:1–11

    Article  Google Scholar 

  • Pathma J, Sakthivel N (2012) Microbial diversity of vermicomposts bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 1:1–26

    Article  Google Scholar 

  • Phuong HK, Tichy V (1976) Activity of humus acids from peat as studied by means of some growth regulator bioassays. Biol Plant 18:195–199

    Article  Google Scholar 

  • Piearce TG et al (1990) A fossil earthworm embryo (Oligochaeta) from beneath a late bronze age midden at Potterna, Wiltshire. UK J Zool Land 220:537–542

    Article  Google Scholar 

  • Reinecke AJ, Hallatt L (1989) Growth and cocoon production of Perionyx excavatus (Oligochaeta). Biol Fertil Soils 8:303–306

    Article  Google Scholar 

  • Reinecke AJ, Venter JM (1987) Moisture preferences growth and reproduction of the compost worm Eisenia fetida (Oligochaeta). Biol Fertil Soils 3:135–141

    Google Scholar 

  • Reinecke AJ, Viljoen SA (1990) The influence of worm density on growth and cocoon production of the compost worm Eisenia fetida (Oligochaeta). Rev Ecol Biol Sol 27:221–230

    Google Scholar 

  • Reinecke AJ, Viljoen SA, Saayman RJ (1992) The suitability of Eudrilus eugeniae, Perionyx excavatus and Eisenia fetida (Oligochaeta) for vermicomposting in Southern Africa in terms of their temperature requirements. Soil Biol Biochem 24:1295–1307

    Article  Google Scholar 

  • Reynolds JW, Wetzel MJ (2004) Terrestrial oligochaeta in North America north of Mexico. Megadrilogica 9(11):71–98

    Google Scholar 

  • Satchell JE (1967) Lumbricidae. In: Burges A, Raw F (eds) Soil biology. Academic, London, pp 259–322

    Google Scholar 

  • Satchell JE (1983) Earthworm ecology from Darwin to vermiculture. Chapman & Hall, London, p 495

    Book  Google Scholar 

  • Schonholzer F, Hahn D, Zeyer J (1999) Origins and fate of fungi and bacteria in the gut of Lumbricus terrestris L. studied by image and analysis. FEMS Microbiol Ecol 28:235–248

    Article  CAS  Google Scholar 

  • Senesi N (1989) Composted materials as organic fertilizers. Sci Total Environ 81/82:521–542

    Article  Google Scholar 

  • Sharma S, Pradhan K, Satya S, Vasudevan P (2005) Potentiality of earthworms for waste management and other uses – a review. J Am Sci 1(1):4–16

    Google Scholar 

  • Sherman R (1994) Worms can recycle your garbage. AG-473-18. Cooperative Extension Service, Raleigh

    Google Scholar 

  • Sherman R (2003) Raising earthworms successfully. North Carolina Cooperative Extensive Service, Raleigh

    Google Scholar 

  • Shipitalo MJ, Butt KR (1999) Occupancy and geometrical properties of Lumbricus terrestris L. burrows affecting infiltration. Pedobiologia 43:782–794

    Google Scholar 

  • Shipitalo MJ, Gibbs F (2000) Potential of earthworm burrows to transmit injected animal wastes to tile Drains. Soil Sci Soc Am J 64:2103–2109

    Article  CAS  Google Scholar 

  • Shipitalo MJ, Dick WA, Edwards WM (2000) Conservation tillage and macropore factors that affect water movement and the fate of chemicals. Soil Tillage Res 53:167–183

    Article  Google Scholar 

  • Sinha RK et al (2002) Vermiculture and waste management: study of action of earthworms Eisenia foetida, Eudrilus euginae and Perionyx excavatus on biodegradation of some community wastes in India and Australia. Environmentalist 22:261–268

    Article  Google Scholar 

  • Stephenson J (1930) The Oligochaeta. Oxford University Press, Oxford

    Google Scholar 

  • Suthar S (2007) Production of vermifertilizer from guar gum industrial waste by using composting earthworm Perionyx sansibaricus (Perrier). Environmentalist 27:329–335

    Article  Google Scholar 

  • Suthar S (2008) Development of a novel epigeic-anecic-based polyculture vermireactor for efficient treatment of municipal sewage water sludge. Int J Environ Waste Manage 2:84–101

    Article  CAS  Google Scholar 

  • Tomati U, Grappelli A, Galli E (1987) The presence of growth regulators in earthworm-worked wastes. In: Bonvicini Paglioi AM, Omodeo P (eds) On earthworms. Selected symposia and monographs 2. Mucchi Editore, Modena, pp 423–436

    Google Scholar 

  • Toyota K, Kimura M (2000) Microbial community indigenous to the earthworm Eisenia fetida. Biol Fertil Soils 31:187–190

    Article  Google Scholar 

  • Urbanek J, Dolezual F (1992) Review of some case studies on the abundance and on the hydraulic efÞciency of earthworm channels in Czechoslovak soils, with reference to the subsurface pipe drainage. Soil Biol Biochem 24:1563–1571

    Article  Google Scholar 

  • Urquhart AT (1887) On the work of earthworms in New Zealand. Trans NZ Inst 19:119–123

    Google Scholar 

  • Van Gansen PS (1962) Structures et functions du tube digestif du lombricien Eisenia foetida Savigny. Pub Imp Med Sci, Bruxelles, p 120

    Google Scholar 

  • Viljoen SA, Reinecke AR (1989) Life-cycle of the African nightcrawler, Eudrilus eugeniae (Oligochaeta). S Afr J Zool 24:27–32

    Article  Google Scholar 

  • Viljoen SA, Reinecke AJ, Hartman L (1992) The temperature requirements of the epigeic earthworm species Dendrobaena veneta (Oligochaeta) – a laboratory study. Soil Biol Biochem 24:1341–1344

    Article  Google Scholar 

  • Watanabe H, Tsukamoto J (1976) Seasonal change in size, class and stage structure of lumbricid Eisenia foetida population in a field compost and its practical application as the decomposer of organic waste matter. Rev Ecol Biol Sol 13:141–146

    Google Scholar 

  • Zachmann JE, Linden DR, Clapp CE (1987) Macroporous inÞltration and redistribution as affected by earthworms, tillage and residue. Soil Sci Soc Am J 51:1580–1586

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

S, K.K., Ibrahim, M.H., Quaik, S., Ismail, S.A. (2016). General Introduction to Earthworms, Their Classifications, and Biology. In: Prospects of Organic Waste Management and the Significance of Earthworms. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-319-24708-3_4

Download citation

Publish with us

Policies and ethics