Skip to main content

Sequence Determinants of Yeast Replication Origins

  • Chapter
  • First Online:

Abstract

The first eukaryotic replication origin was isolated from S. cerevisiae in the late 1970s using a plasmid maintenance assay. Combined with Sanger sequencing, this assay gave valuable insights into origin structure in S. cerevisiae and a few other yeast species. Fast-forward to this millennium, and the same simple assay in conjunction with modern “next-generation” sequencing and other high-throughput techniques testing origin structure and activity has led to an explosion of powerful approaches for dissecting origin sequence and function. Although such studies are still in their infancy, they have already uncovered a surprising diversification of origin sequences over a relatively short evolutionary time span. In this chapter we focus on how these approaches are being applied to understand origin structure and evolution in diverse species of budding yeasts. These approaches hold out the hope that through a comprehensive analysis of origin function across the budding yeast lineage, we can begin to understand the evolutionary forces that shape the replication landscape.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bogenschutz NL, Rodriguez J, Tsukiyama T. Initiation of DNA replication from non-canonical sites on an origin-depleted chromosome. PLoS One. 2014;9(12):e114545.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Dershowitz A, Snyder M, Sbia M, Skurnick JH, Ong LY, Newlon CS. Linear derivatives of Saccharomyces cerevisiae chromosome III can be maintained in the absence of autonomously replicating sequence elements. Mol Cell Biol. 2007;27(13):4652–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Di Rienzi SC, Lindstrom KC, Mann T, Noble WS, Raghuraman MK, Brewer BJ. Maintaining replication origins in the face of genomic change. Genome Res. 2012;22:1940–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Hyrien O. Peaks cloaked in the mist: the landscape of mammalian replication origins. J Cell Biol. 2015;208(2):147–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Smith OK, Aladjem MI. Chromatin structure and replication origins: determinants of chromosome replication and nuclear organization. J Mol Biol. 2014;426(20):3330–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Jacob F, Brenner S, Cuzin F. On the regulation of DNA replication in bacteria. Cold Spring Harb Symp Quant Biol. 1963;28:329–48.

    Article  CAS  Google Scholar 

  7. Stinchcomb DT, Struhl K, Davis RW. Isolation and characterisation of a yeast chromosomal replicator. Nature. 1979;282(5734):39–43.

    Article  PubMed  CAS  Google Scholar 

  8. Struhl K, Stinchcomb DT, Scherer S, Davis RW. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979;76(3):1035–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Hand R. Eucaryotic DNA: organization of the genome for replication. Cell. 1978;15:317–25.

    Article  PubMed  CAS  Google Scholar 

  10. Hinnen A, Hicks JB, Fink GR. Transformation of yeast. Proc Natl Acad Sci U S A. 1978;75(4):1929–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Broach JR, Li YY, Feldman J, Jayaram M, Abraham J, Nasmyth KA, et al. Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harb Symp Quant Biol. 1983;2:1165–73.

    Article  Google Scholar 

  12. Brewer BJ, Fangman WL. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell. 1987;51(3):463–71.

    Article  PubMed  CAS  Google Scholar 

  13. Huberman JA, Spotila LD, Nawotka KA, el-Assouli SM, Davis LR. The in vivo replication origin of the yeast 2 microns plasmid. Cell. 1987;51(3):473–81.

    Article  PubMed  CAS  Google Scholar 

  14. Bouton AH, Smith MM. Fine-structure analysis of the DNA sequence requirements for autonomous replication of Saccharomyces cerevisiae plasmids. Mol Cell Biol. 1986;6(7):2354–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Kearsey S. Analysis of sequences conferring autonomous replication in baker’s yeast. EMBO J. 1983;2(9):1571–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Kearsey S. Structural requirements for the function of a yeast chromosomal replicator. Cell. 1984;37(1):299–307.

    Article  PubMed  CAS  Google Scholar 

  17. Newlon CS, Theis JF. The structure and function of yeast ARS elements. Curr Opin Genet Dev. 1993;3(5):752–8.

    Article  PubMed  CAS  Google Scholar 

  18. Shirahige K, Iwasaki T, Rashid MB, Ogasawara N, Yoshikawa H. Location and characterization of autonomously replicating sequences from chromosome VI of Saccharomyces cerevisiae. Mol Cell Biol. 1993;13:5043–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Walker SS, Francesconi SC, Eisenberg S. A DNA replication enhancer in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1990;87(12):4665–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Celniker SE, Sweder K, Srienc F, Bailey JE, Campbell JL. Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol Cell Biol. 1984;4(11):2455–66.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Theis JF, Newlon CS. The ARS309 chromosomal replicator of Saccharomyces cerevisiae depends on an exceptional ARS consensus sequence. Proc Natl Acad Sci U S A. 1997;94(20):10786–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Marahrens Y, Stillman B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science. 1992;255(5046):817–23.

    Article  PubMed  CAS  Google Scholar 

  23. Lucas IA, Raghuraman MK. The dynamics of chromosome replication in yeast. Curr Top Dev Biol. 2003;55:1–73.

    Article  PubMed  CAS  Google Scholar 

  24. Li H, Stillman B. The origin recognition complex: a biochemical and structural view. Subcell Biochem. 2012;62:37–58.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Coverley D, Laskey RA. Regulation of eukaryotic DNA replication. Annu Rev Biochem. 1994;63:745–76.

    Article  PubMed  CAS  Google Scholar 

  26. Riera A, Tognetti S, Speck C. Helicase loading: how to build a MCM2-7 double-hexamer. Semin Cell Dev Biol. 2014;30:104–9.

    Article  PubMed  CAS  Google Scholar 

  27. Huang RY, Kowalski D. A DNA unwinding element and an ARS consensus comprise a replication origin within a yeast chromosome. EMBO J. 1993;12(12):4521–31.

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Natale DA, Schubert AE, Kowalski D. DNA helical stability accounts for mutational defects in a yeast replication origin. Proc Natl Acad Sci U S A. 1992;89(7):2654–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Umek RM, Kowalski D. Thermal energy suppresses mutational defects in DNA unwinding at a yeast replication origin. Proc Natl Acad Sci U S A. 1990;87(7):2486–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Umek RM, Kowalski D. The ease of DNA unwinding as a determinant of initiation at yeast replication origins. Cell. 1988;52(4):559–67.

    Article  PubMed  CAS  Google Scholar 

  31. Lin S, Kowalski D. Functional equivalency and diversity of cis-acting elements among yeast replication origins. Mol Cell Biol. 1997;17(9):5473–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Rao H, Marahrens Y, Stillman B. Functional conservation of multiple elements in yeast chromosomal replicators. Mol Cell Biol. 1994;14(11):7643–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Wilmes GM, Bell SP. The B2 element of the Saccharomyces cerevisiaeARS1 origin of replication requires specific sequences to facilitate pre-RC formation. Proc Natl Acad Sci U S A. 2002;99(1):101–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Lipford JR, Bell SP. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol Cell. 2001;7(1):21–30.

    Article  PubMed  CAS  Google Scholar 

  35. Zou L, Stillman B. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol. 2000;20(9):3086–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Rhode PR, Sweder KS, Oegema KF, Campbell JL. The gene encoding ARS-binding factor I is essential for the viability of yeast. Genes Dev. 1989;3(12A):1926–39.

    Article  PubMed  CAS  Google Scholar 

  37. Diffley JF, Stillman B. Similarity between the transcriptional silencer binding proteins ABF1 and RAP1. Science. 1989;246(4933):1034–8.

    Article  PubMed  CAS  Google Scholar 

  38. Shore D, Nasmyth K. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell. 1987;51(5):721–32.

    Article  PubMed  CAS  Google Scholar 

  39. Knott SR, Peace JM, Ostrow AZ, Gan Y, Rex AE, Viggiani CJ, et al. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell. 2012;148(1–2):99–111.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, et al. Life with 6000 genes. Science. 1996;274(5287):546. 63–7.

    Article  PubMed  CAS  Google Scholar 

  41. Raghuraman MK, Brewer BJ. Molecular analysis of the replication program in unicellular model organisms. Chromosome Res. 2010;18(1):19–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Raghuraman MK, Winzeler EA, Collingwood D, Hunt S, Wodicka L, Conway A, et al. Replication dynamics of the yeast genome. Science. 2001;294(5540):115–21.

    Article  PubMed  CAS  Google Scholar 

  43. Wyrick JJ, Aparicio JG, Chen T, Barnett JD, Jennings EG, Young RA, et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high- resolution mapping of replication origins. Science. 2001;294(5550):2357–60.

    Article  PubMed  CAS  Google Scholar 

  44. Xu W, Aparicio JG, Aparicio OM, Tavare S. Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae. BMC Genomics. 2006;7:276.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Yabuki N, Terashima H, Kitada K. Mapping of early firing origins on a replication profile of budding yeast. Genes Cells. 2002;7(8):781–9.

    Article  PubMed  CAS  Google Scholar 

  46. Feng W, Collingwood D, Boeck ME, Fox LA, Alvino GM, Fangman WL, et al. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat Cell Biol. 2006;8(2):148–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. McGuffee SR, Smith DJ, Whitehouse I. Quantitative, genome-wide analysis of eukaryotic replication initiation and termination. Mol Cell. 2013;50(1):123–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Breier AM, Chatterji S, Cozzarelli NR. Prediction of Saccharomyces cerevisiae replication origins. Genome Biol. 2004;5(4):R22.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Liachko I, Bhaskar A, Lee C, Chung SC, Tye BK, Keich U. A comprehensive genome-wide map of autonomously replicating sequences in a naive genome. PLoS Genet. 2010;6(5):e1000946.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Liachko I, Tanaka E, Cox K, Chung SC, Yang L, Seher A, et al. Novel features of ARS selection in budding yeast Lachancea kluyveri. BMC Genomics. 2011;12:633.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Nieduszynski CA, Knox Y, Donaldson AD. Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev. 2006;20(14):1874–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Liachko I, Youngblood RA, Keich U, Dunham MJ. High-resolution mapping, characterization, and optimization of autonomously replicating sequences in yeast. Genome Res. 2013;23(4):698–704.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server issue):W202–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Fowler DM, Fields S. Deep mutational scanning: a new style of protein science. Nat Methods. 2014;11(8):801–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Liachko I, Youngblood RA, Tsui K, Bubb KL, Queitsch C, Raghuraman MK, et al. GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris. PLoS Genet. 2014;10(3):e1004169.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Fabiani L, Frontali L, Newlon CS. Identification of an essential core element and stimulatory sequences in a Kluyveromyces lactis ARS element, KARS101. Mol Microbiol. 1996;19(4):756–66.

    PubMed  CAS  Google Scholar 

  57. Antequera F. Genomic specification and epigenetic regulation of eukaryotic DNA replication origins. EMBO J. 2004;23(22):4365–70.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Cotobal C, Segurado M, Antequera F. Structural diversity and dynamics of genomic replication origins in Schizosaccharomyces pombe. EMBO J. 2010;29(5):934–42.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Xu J, Yanagisawa Y, Tsankov AM, Hart C, Aoki K, Kommajosyula N, et al. Genome-wide identification and characterization of replication origins by deep sequencing. Genome Biol. 2012;13(4):R27.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Chuang RY, Kelly TJ. The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc Natl Acad Sci U S A. 1999;96(6):2656–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Lee JK, Moon KY, Jiang Y, Hurwitz J, Chuang RY, Kelly TJ. The Schizosaccharomyces pombe origin recognition complex interacts with multiple AT-rich regions of the replication origin DNA by means of the AT-hook domains of the spOrc4 protein. The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc Natl Acad Sci U S A. 2001;98(24):13589–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Reeves R, Nissen MS. The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J Biol Chem. 1990;265(15):8573–82.

    PubMed  CAS  Google Scholar 

  63. Santocanale C, Sharma K, Diffley JF. Activation of dormant origins of DNA replication in budding yeast. Genes Dev. 1999;13(18):2360–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Friedman KL, Brewer BJ, Fangman WL. Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells. 1997;2(11):667–78.

    Article  PubMed  CAS  Google Scholar 

  65. Yamashita M, Hori Y, Shinomiya T, Obuse C, Tsurimoto T, Yoshikawa H, et al. The efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae chromosome VI. Genes Cells. 1997;2(11):655–65.

    Article  PubMed  CAS  Google Scholar 

  66. Thoma F, Bergman LW, Simpson RT. Nuclease digestion of circular TRP1ARS1 chromatin reveals positioned nucleosomes separated by nuclease-sensitive regions. J Mol Biol. 1984;177(4):715–33.

    Article  PubMed  CAS  Google Scholar 

  67. Simpson RT. Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature. 1990;343(6256):387–9.

    Article  PubMed  CAS  Google Scholar 

  68. Belsky JA, MacAlpine HK, Lubelsky Y, Hartemink AJ, MacAlpine DM. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly. Genes Dev. 2015;29(2):212–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM. Conserved nucleosome positioning defines replication origins. Genes Dev. 2010;24(8):748–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Berbenetz NM, Nislow C, Brown GW. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet. 2010;6(9):e1001092.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Tsai HJ, Baller JA, Liachko I, Koren A, Burrack LS, Hickman MA, et al. Origin replication complex binding, nucleosome depletion patterns, and a primary sequence motif can predict origins of replication in a genome with epigenetic centromeres. MBio. 2014;5(5):e01703–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Hoggard T, Shor E, Muller CA, Nieduszynski CA, Fox CA. A link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet. 2013;9(9):e1003798.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Shimada K, Pasero P, Gasser SM. ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase. Genes Dev. 2002;16(24):3236–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Bleichert F, Botchan MR, Berger JM. Crystal structure of the eukaryotic origin recognition complex. Nature. 2015;519(7543):321–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Walker SS, Malik AK, Eisenberg S. Analysis of the interactions of functional domains of a nuclear origin of replication from Saccharomyces cerevisiae. Nucleic Acids Res. 1991;19(22):6255–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Huang RY, Kowalski D. Multiple DNA elements in ARS305 determine replication origin activity in a yeast chromosome. Nucleic Acids Res. 1996;24(5):816–23.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Theis JF, Newlon CS. Domain B of ARS307 contains two functional elements and contributes to chromosomal replication origin function. Mol Cell Biol. 1994;14(11):7652–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Alvino GM, Collingwood D, Murphy JM, Delrow J, Brewer BJ, Raghuraman MK. Replication in hydroxyurea: it’s a matter of time. Mol Cell Biol. 2007;27(18):6396–406.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Feng W, Bachant J, Collingwood D, Raghuraman MK, Brewer BJ. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress. Genetics. 2009;183(4):1249–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Schneider TD. Information content of individual genetic sequences. J Theor Biol. 1997;189(4):427–41.

    Article  PubMed  CAS  Google Scholar 

  81. Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990;18(20):6097–100.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Dujon B. Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution. Trends Genet. 2006;22(7):375–87.

    Article  PubMed  CAS  Google Scholar 

  83. Dujon B. Yeast evolutionary genomics. Nat Rev Genet. 2010;11(7):512–24.

    Article  PubMed  CAS  Google Scholar 

  84. Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet. 2007;39(10):1235–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Bonny Brewer for critical reading of this manuscript. I.L. was supported by a grant from the NSF (1243710). M.K.R. was supported by grants from the NIH (GM018926) and the NSF (1243710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Raghuraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Raghuraman, M.K., Liachko, I. (2016). Sequence Determinants of Yeast Replication Origins. In: Kaplan, D. (eds) The Initiation of DNA Replication in Eukaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-24696-3_7

Download citation

Publish with us

Policies and ethics