Skip to main content

Role of Posttranslational Modifications in Replication Initiation

  • Chapter
  • First Online:
The Initiation of DNA Replication in Eukaryotes

Abstract

DNA replication must occur precisely once per cell cycle to maintain a stable genome. An important means to achieve this is through multilayered regulation of replication initiation at both local and global levels. Recent genetic and biochemical studies in several organisms have revealed critical roles of posttranslational modifications (PTMs) in these regulations. While the best-demonstrated class of PTMs is kinase-mediated phosphorylation, additional forms of PTMs including ubiquitylation, methylation, and acetylation also contribute to the control of replication initiation. Here we survey the current understanding of how different types of modifications govern and fine-tune several aspects of replication initiation, including origin licensing, firing, and global replication timing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem. 2002;71:333–74.

    Article  PubMed  CAS  Google Scholar 

  2. Kelly TJ, Brown GW. Regulation of chromosome replication. Annu Rev Biochem. 2000;69:829–80.

    Article  PubMed  CAS  Google Scholar 

  3. Remus D, Diffley JFX. Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol. 2009;21(6):771–7.

    Article  PubMed  CAS  Google Scholar 

  4. Sclafani RA, Holzen TM. Cell cycle regulation of DNA replication. Annu Rev Genet. 2007;41(1):237–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem. 2010;79:89–130.

    Article  PubMed  CAS  Google Scholar 

  6. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol. 2006;8(4):358–66.

    Article  PubMed  CAS  Google Scholar 

  7. Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37(2):247–58.

    Article  PubMed  CAS  Google Scholar 

  8. Kang YH, Galal WC, Farina A, Tappin I, Hurwitz J. Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc Natl Acad Sci U S A. 2012;109(16):6042–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Moyer SE, Lewis PW, Botchan MR. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A. 2006;103(27):10236–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC. Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell. 2006;21(4):581–7.

    Article  PubMed  CAS  Google Scholar 

  11. Hardy CF, Dryga O, Seematter S, Pahl PM, Sclafani RA. mcm5/cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc Natl Acad Sci U S A. 1997;94(7):3151–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell. 2011;146(1):80–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev. 2010;24(12):1208–19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Sheu Y-J, Stillman B. Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol Cell. 2006;24(1):101–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Zou L, Stillman B. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol. 2000;20(9):3086–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Gros J, Devbhandari S, Remus D. Origin plasticity during budding yeast DNA replication in vitro. EMBO J. 2014;33(6):621–36.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Bruck I, Kaplan D. Dbf4-Cdc7 phosphorylation of Mcm2 is required for cell growth. J Biol Chem. 2009;284(42):28823–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Bruck I, Kaplan DL. The Dbf4-Cdc7 kinase promotes Mcm2-7 ring opening to allow for single-stranded DNA extrusion and helicase assembly. J Biol Chem. 2014.

    Google Scholar 

  19. Ramer MD, Suman ES, Richter H, Stanger K, Spranger M, Bieberstein N, et al. Dbf4 and Cdc7 proteins promote DNA replication through interactions with distinct Mcm2-7 protein subunits. J Biol Chem. 2013;288(21):14926–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Randell JCW, Fan A, Chan C, Francis LI, Heller RC, Galani K, et al. Mec1 is one of multiple kinases that prime the Mcm2-7 helicase for phosphorylation by Cdc7. Mol Cell. 2010;40(3):353–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Sheu Y-J, Stillman B. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature. 2010;463(7277):113–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Stead BE, Brandl CJ, Davey MJ. Phosphorylation of Mcm2 modulates Mcm2-7 activity and affects the cell's response to DNA damage. Nucleic Acids Res. 2011;39(16):6998–7008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Davé A, Cooley C, Garg M, Bianchi A. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep. 2014;7(1):53–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Hiraga S-I, Alvino GM, Chang F, Lian H-Y, Sridhar A, Kubota T, et al. Rif1 controls DNA replication by directing protein phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev. 2014;28(4):372–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Tak Y-S, Tanaka Y, Endo S, Kamimura Y, Araki H. A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2-Dpb11. EMBO J. 2006;25(9):1987–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature. 2007;445(7125):328–32.

    Article  PubMed  CAS  Google Scholar 

  27. Zegerman P, Diffley JFX. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature. 2007;445(7125):281–5.

    Article  PubMed  CAS  Google Scholar 

  28. Masumoto H, Muramatsu S, Kamimura Y, Araki H. S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature. 2002;415(6872):651–5.

    Article  PubMed  CAS  Google Scholar 

  29. Calzada A, Sánchez M, Sánchez E, Bueno A. The stability of the Cdc6 protein is regulated by cyclin-dependent kinase/cyclin B complexes in Saccharomyces cerevisiae. J Biol Chem. 2000;275(13):9734–41.

    Article  PubMed  CAS  Google Scholar 

  30. Liku ME, Nguyen VQ, Rosales AW, Irie K, Li JJ. CDK phosphorylation of a novel NLS-NES module distributed between two subunits of the Mcm2-7 complex prevents chromosomal rereplication. Mol Biol Cell. 2005;16(10):5026–39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Chen S, Bell SP. CDK prevents Mcm2-7 helicase loading by inhibiting Cdt1 interaction with Orc6. Genes Dev. 2011.

    Google Scholar 

  32. Nguyen VQ, Co C, Li JJ. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature. 2001;411(6841):1068–73.

    Article  PubMed  CAS  Google Scholar 

  33. Lopez-Mosqueda J, Maas NL, Jonsson ZO, Defazio-Eli LG, Wohlschlegel J, Toczyski DP. Damage-induced phosphorylation of Sld3 is important to block late origin firing. Nature. 2010;467(7314):479–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Zegerman P, Diffley JFX. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature. 2010;467(7314):474–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Weinreich M, Stillman B. Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J. 1999;18(19):5334–46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Masai H, Taniyama C, Ogino K, Matsui E, Kakusho N, Matsumoto S, et al. Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. J Biol Chem. 2006;281(51):39249–61.

    Article  PubMed  CAS  Google Scholar 

  37. Fukuura M, Nagao K, Obuse C, Takahashi TS, Nakagawa T, Masukata H. CDK promotes interactions of Sld3 and Drc1 with Cut5 for initiation of DNA replication in fission yeast. Mol Biol Cell. 2011;22(14):2620–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Jallepalli PV, Brown GW, MuziFalconi M, Tien D, Kelly TJ. Regulation of the replication initiator protein p65(cdc18) by CDK phosphorylation. Genes Dev. 1997;11(21):2767–79.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Lopez-Girona A, Mondesert O, Leatherwood J, Russell P. Negative regulation of Cdc18 DNA replication protein by Cdc2. Mol Biol Cell. 1998;9(1):63–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Vas A, Mok W, Leatherwood J. Control of DNA rereplication via Cdc2 phosphorylation sites in the origin recognition complex. Mol Cell Biol. 2001;21(17):5767–77.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication. J Cell Biol. 2011;193(6):995–1007.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Pelizon C, Madine MA, Romanowski P, Laskey RA. Unphosphorylatable mutants of Cdc6 disrupt its nuclear export but still support DNA replication once per cell cycle. Genes Dev. 2000;14(19):2526–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Gaggioli V, Zeiser E, Rivers D, Bradshaw CR, Ahringer J, Zegerman P. CDK phosphorylation of SLD-2 is required for replication initiation and germline development in C. elegans. J Cell Biol. 2014;204(4):507–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Tsuji T, Ficarro SB, Jiang W. Essential role of phosphorylation of MCM2 by Cdc7/Dbf4 in the initiation of DNA replication in mammalian cells. Mol Biol Cell. 2006;17(10):4459–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Montagnoli A, Valsasina B, Brotherton D, Troiani S, Rainoldi S, Tenca P, et al. Identification of Mcm2 phosphorylation sites by S-phase-regulating kinases. J Biol Chem. 2006;281(15):10281–90.

    Article  PubMed  CAS  Google Scholar 

  46. Boos D, Sanchez-Pulido L, Rappas M, Pearl LH, Oliver AW, Ponting CP, et al. Regulation of DNA replication through Sld3-Dpb11 interaction is conserved from yeast to humans. Curr Biol. 2011;21(13):1152–7.

    Article  PubMed  CAS  Google Scholar 

  47. Li X, Zhao Q, Liao R, Sun P, Wu X. The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem. 2003;278(33):30854–8.

    Article  PubMed  CAS  Google Scholar 

  48. Takeda DY, Parvin JD, Dutta A. Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase. J Biol Chem. 2005;280(24):23416–23.

    Article  PubMed  CAS  Google Scholar 

  49. Méndez J, Zou-Yang XH, Kim S-Y, Hidaka M, Tansey WP, Stillman B. Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol Cell. 2002;9(3):481–91.

    Article  PubMed  Google Scholar 

  50. Petersen BO, Lukas J, Sørensen CS, Bartek J, Helin K. Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J. 1999;18(2):396–410.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Guo C, Kumagai A, Schlacher K, Shevchenko A, Shevchenko A, Dunphy WG. Interaction of Chk1 with treslin negatively regulates the initiation of chromosomal DNA replication. Mol Cell. 2014;1–14.

    Google Scholar 

  52. Lei M, Kawasaki Y, Young MR, Kihara M, Sugino A, Tye BK. Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev. 1997;11(24):3365–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Cho W-H, Lee Y-J, Kong S-I, Hurwitz J, Lee J-K. CDC7 kinase phosphorylates serine residues adjacent to acidic amino acids in the minichromosome maintenance 2 protein. Proc Natl Acad Sci U S A. 2006;103(31):11521–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Lee J-K, Seo Y-S, Hurwitz J. The Cdc23 (Mcm10) protein is required for the phosphorylation of minichromosome maintenance complex by the Dfp1-Hsk1 kinase. Proc Natl Acad Sci U S A. 2003;100(5):2334–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. On KF, Beuron F, Frith D, Snijders AP, Morris EP, Diffley JFX. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. EMBO J. 2014;33(6):605–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Sun J, Fernández-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, et al. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev. 2014;28(20):2291–303.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Francis LI, Randell JCW, Takara TJ, Uchima L, Bell SP. Incorporation into the prereplicative complex activates the Mcm2-7 helicase for Cdc7-Dbf4 phosphorylation. Genes Dev. 2009;23(5):643–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Kihara M, Nakai W, Asano S, Suzuki A, Kitada K, Kawasaki Y, et al. Characterization of the yeast Cdc7p/Dbf4p complex purified from insect cells. Its protein kinase activity is regulated by Rad53p. J Biol Chem. 2000;275(45):35051–62.

    Article  PubMed  CAS  Google Scholar 

  59. Mattarocci S, Shyian M, Lemmens L, Damay P, Altintas DM, Shi T, et al. Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep. 2014;7(1):62–9.

    Article  PubMed  CAS  Google Scholar 

  60. Poh WT, Chadha GS, Gillespie PJ, Kaldis P, Blow JJ. Xenopus Cdc7 executes its essential function early in S phase and is counteracted by checkpoint-regulated protein phosphatase 1. Open Biol. 2014;4:130138.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Chapman JW, Johnston LH. The yeast gene, DBF4, essential for entry into S phase is cell cycle regulated. Exp Cell Res. 1989;180(2):419–28.

    Article  PubMed  CAS  Google Scholar 

  62. Cheng LA, Collyer T, Hardy CFJ. Cell cycle regulation of DNA replication initiator factor Dbf4p. Mol Cell Biol. 1999;19(6):4270–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Ferreira MG, Santocanale C, Drury LS, Diffley JFX. Dbf4p, an essential S phase-promoting factor, is targeted for degradation by the anaphase-promoting complex. Mol Cell Biol. 2000;20(1):242–8.

    Article  PubMed  CAS  Google Scholar 

  64. Oshiro G, Owens JC, Shellman Y, Sclafani RA, Li JJ. Cell cycle control of Cdc7p kinase activity through regulation of Dbf4p stability. Mol Cell Biol. 1999;19(7):4888–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Bianchi A, Shore D. Early replication of short telomeres in budding yeast. Cell. 2007;128(6):1051–62.

    Article  PubMed  CAS  Google Scholar 

  66. Cornacchia D, Dileep V, Quivy JP, Foti R, Tili F, Santarella-Mellwig R, et al. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J. 2012;31(18):3678–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev. 2012;26(2):137–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Wotton D, Shore D. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 1997;11(6):748–60.

    Article  PubMed  CAS  Google Scholar 

  69. Yamazaki S, Ishii A, Kanoh Y, Oda M, Nishito Y, Masai H. Rif1 regulates the replication timing domains on the human genome. EMBO J. 2012;31(18):3667–77.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Diffley JFX. Regulation of early events in chromosome replication. Curr Biol. 2004;14(18):R778–86.

    Article  PubMed  CAS  Google Scholar 

  71. Reed SI. Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nat Rev Mol Cell Biol. 2003;4(11):855–64.

    Article  PubMed  CAS  Google Scholar 

  72. Nash P, Tang X, Orlicky S, Chen Q, Gertler FB, Mendenhall MD, et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature. 2001;414(6863):514–21.

    Article  PubMed  CAS  Google Scholar 

  73. Verma R, Annan RS, Huddleston MJ, Carr SA, Reynard G, Deshaies RJ. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science. 1997;278(5337):455–60.

    Article  PubMed  CAS  Google Scholar 

  74. Arias EE, Walter JC. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 2007;21(5):497–518.

    Article  PubMed  CAS  Google Scholar 

  75. Blow JJ, Dutta A. Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol. 2005;6(6):476–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Tanaka S, Araki H. Multiple regulatory mechanisms to inhibit untimely initiation of DNA replication are important for stable genome maintenance. PLoS Genet. 2011;7(6), e1002136.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Araki H. Cyclin-dependent kinase-dependent initiation of chromosomal DNA replication. Curr Opin Cell Biol. 2010;22(6):766–71.

    Article  PubMed  CAS  Google Scholar 

  78. Muramatsu S, Hirai K, Tak Y-S, Kamimura Y, Araki H. CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol (epsilon}, and GINS in budding yeast. Genes Dev. 2010;24(6):602–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Kamimura Y, Tak Y-S, Sugino A, Araki H. Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J. 2001;20(8):2097–107.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Sengupta S, van Deursen F, De Piccoli G, Labib K. Dpb2 integrates the leading-strand DNA polymerase into the eukaryotic replisome. Curr Biol. 2013.

    Google Scholar 

  81. Johansson E, Speck C, Chabes A. A top-down view on DNA replication and recombination from 9,000 feet above sea level. Genome Biol. 2011;12(4):304.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell. 2010;140(3):349–59.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Zegerman P. Evolutionary conservation of the CDK targets in eukaryotic DNA replication initiation. Chromosoma. 2015.

    Google Scholar 

  84. Broek D, Bartlett R, Crawford K, Nurse P. Involvement of p34cdc2 in establishing the dependency of S phase on mitosis. Nature. 1991;349(6308):388–93.

    Article  PubMed  CAS  Google Scholar 

  85. Correa-bordes J, Nurse P. p25rum1 orders S phase and mitosis by acting as an inhibitor of the p34cdc2 mitotic kinase. Cell. 1995;83(6):1001–9.

    Article  PubMed  CAS  Google Scholar 

  86. Dahmann C, Diffley JF, Nasmyth KA. S-Phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr Biol. 1995;5(11):1257–69.

    Article  PubMed  CAS  Google Scholar 

  87. Hayles J, Fisher D, Woollard A, Nurse P. Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2-mitotic B cyclin complex. Cell. 1994;78(5):813–22.

    Article  PubMed  CAS  Google Scholar 

  88. Itzhaki JE, Gilbert CS, Porter ACG. Construction by gene targeting in human cells of a 'conditional' CDC2 mutant that rereplicates its DNA. Nat Genet. 1997;15(3):258–65.

    Article  PubMed  CAS  Google Scholar 

  89. Jallepalli PV, Kelly TJ. Rum1 and Cdc18 link inhibition of cyclin-dependent kinase to the initiation of DNA replication in Schizosaccharomyces pombe. Genes Dev. 1996;10(5):541–52.

    Article  PubMed  CAS  Google Scholar 

  90. Moreno S, Nurse P. Regulation of progression through the G1 phase of the cell cycle by the rum1+ gene. Nature. 1994;367(6460):236–42.

    Article  PubMed  CAS  Google Scholar 

  91. Detweiler CS, Li JJ. Ectopic induction of Clb2 in early G1 phase is sufficient to block prereplicative complex formation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1998;95(5):2384–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Piatti S, Böhm T, Cocker JH, Diffley JF, Nasmyth K. Activation of S-phase-promoting CDKs in late G1 defines a ‘point of no return’ after which Cdc6 synthesis cannot promote DNA replication in yeast. Genes Dev. 1996;10(12):1516–31.

    Article  PubMed  CAS  Google Scholar 

  93. Cocker JH, Piatti S, Santocanale C, Nasmyth K, Diffley JF. An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature. 1996;379(6561):180–2.

    Article  PubMed  CAS  Google Scholar 

  94. Donovan S, Harwood J, Drury LS, Diffley JF. Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci U S A. 1997;94(11):5611–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Neuwald AF, Aravind L, Spouge JL, Koonin EV. AAA(+): a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999;9(1):27–43.

    PubMed  CAS  Google Scholar 

  96. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JFX. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139(4):719–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Drury LS, Perkins G, Diffley JF. The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J. 1997;16(19):5966–76.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Drury LS, Perkins G, Diffley JF. The cyclin-dependent kinase Cdc28p regulates distinct modes of Cdc6p proteolysis during the budding yeast cell cycle. Curr Biol. 2000;10(5):231–40.

    Article  PubMed  CAS  Google Scholar 

  99. Elsasser S, Chi Y, Yang P, Campbell JL. Phosphorylation controls timing of Cdc6p destruction: a biochemical analysis. Mol Biol Cell. 1999;10(10):3263–77.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Elsasser S, Lou F, Wang B, Campbell JL, Jong A. Interaction between yeast Cdc6 protein and B-type cyclin/Cdc28 kinases. Mol Biol Cell. 1996;7(11):1723–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Perkins G, Drury LS, Diffley JF. Separate SCF(CDC4) recognition elements target Cdc6 for proteolysis in S phase and mitosis. EMBO J. 2001;20(17):4836–45.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Sánchez M, Calzada A, Bueno A. The Cdc6 protein is ubiquitinated in vivo for proteolysis in Saccharomyces cerevisiae. J Biol Chem. 1999;274(13):9092–7.

    Article  PubMed  Google Scholar 

  103. Labib K, Diffley JF, Kearsey SE. G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nat Cell Biol. 1999;1(7):415–22.

    Article  PubMed  CAS  Google Scholar 

  104. Nguyen VQ, Co C, Irie K, Li JJ. Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2-7. Curr Biol. 2000;10(4):195–205.

    Article  PubMed  CAS  Google Scholar 

  105. Bell SP. The origin recognition complex: from simple origins to complex functions. Genes Dev. 2002;16(6):659–72.

    Article  PubMed  CAS  Google Scholar 

  106. Duncker BP, Chesnokov IN, McConkey BJ. The origin recognition complex protein family. Genome Biol. 2009;10(3):214.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Fernández-Cid A, Riera A, Tognetti S, Herrera MC, Samel S, Evrin C, et al. An ORC/Cdc6/MCM2-7 complex is formed in a multistep reaction to serve as a platform for MCM double-hexamer assembly. Mol Cell. 2013;50(4):577–88.

    Article  PubMed  CAS  Google Scholar 

  108. Liang C, Weinreich M, Stillman B. ORC and Cdc6p interact and determine the frequency of initiation of DNA replication in the genome. Cell. 1995;81(5):667–76.

    Article  PubMed  CAS  Google Scholar 

  109. Randell JCW, Bowers JL, Rodríguez HK, Bell SP. Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell. 2006;21(1):29–39.

    Article  PubMed  CAS  Google Scholar 

  110. Speck C, Chen Z, Li H, Stillman B. ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol. 2005;12(11):965–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Sun J, Kawakami H, Zech J, Speck C, Stillman B, Li H. Cdc6-induced conformational changes in ORC bound to origin DNA revealed by cryo-electron microscopy. Structure. 2012;20(3):534–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Sun J, Evrin C, Samel SA, Fernández-Cid A, Riera A, Kawakami H, et al. Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA. Nat Struct Mol Biol. 2013;20(8):944–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  113. Wilmes GM, Archambault V, Austin RJ, Jacobson MD, Bell SP, Cross FR. Interaction of the S-phase cyclin Clb5 with an ‘RXL’ docking sequence in the initiator protein Orc6 provides an origin-localized replication control switch. Genes Dev. 2004;18(9):981–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Leatherwood J, Lopez-Girona A, Russell P. Interaction of Cdc2 and Cdc18 with a fission yeast ORC2-like protein. Nature. 1996;379(6563):360–3.

    Article  PubMed  CAS  Google Scholar 

  115. Muzi Falconi M, Brown GW, Kelly TJ. cdc18(+) regulates initiation of DNA replication in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1996;93(4):1566–70.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Nishitani H, Nurse P. p65cdc18 Plays a major role controlling the initiation of DNA replication in fission yeast. Cell. 1995;83(3):397–405.

    Article  PubMed  CAS  Google Scholar 

  117. Delmolino LM, Saha P, Dutta A. Multiple mechanisms regulate subcellular localization of human CDC6. J Biol Chem. 2001;276(29):26947–54.

    Article  PubMed  CAS  Google Scholar 

  118. Fujita M, Yamada C, Goto H, Yokoyama N, Kuzushima K, Inagaki M, et al. Cell cycle regulation of human CDC6 protein. Intracellular localization, interaction with the human mcm complex, and CDC2 kinase-mediated hyperphosphorylation. J Biol Chem. 1999;274(36):25927–32.

    Article  PubMed  CAS  Google Scholar 

  119. Jiang W, Wells NJ, Hunter T. Multistep regulation of DNA replication by Cdk phosphorylation of HsCdc6. Proc Natl Acad Sci U S A. 1999;96(11):6193–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Méndez J, Stillman B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol. 2000;20(22):8602–12.

    Article  PubMed Central  PubMed  Google Scholar 

  121. Saha P, Chen J, Thome KC, Lawlis SJ, Hou ZH, Hendricks M, et al. Human CDC6/Cdc18 associates with Orc1 and cyclin-cdk and is selectively eliminated from the nucleus at the onset of S phase. Mol Cell Biol. 1998;18(5):2758–67.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  122. Kim Y, Kipreos ET. Cdt1 degradation to prevent DNA re-replication: conserved and non-conserved pathways. Cell Div. 2007;2:18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Liu E, Li X, Yan F, Zhao Q, Wu X. Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem. 2004;279(17):17283–8.

    Article  PubMed  CAS  Google Scholar 

  124. Nishitani H, Lygerou Z, Nishimoto T. Proteolysis of DNA replication licensing factor Cdt1 in S-phase is performed independently of Geminin through its N-terminal region. J Biol Chem. 2004;279(29):30807–16.

    Article  PubMed  CAS  Google Scholar 

  125. Sugimoto N, Tatsumi Y, Tsurumi T, Matsukage A, Kiyono T, Nishitani H, et al. Cdt1 phosphorylation by cyclin A-dependent kinases negatively regulates its function without affecting geminin binding. J Biol Chem. 2004;279(19):19691–7.

    Article  PubMed  CAS  Google Scholar 

  126. Melixetian M, Ballabeni A, Masiero L, Gasparini P, Zamponi R, Bartek J, et al. Loss of geminin induces rereplication in the presence of functional p53. J Cell Biol. 2004;165(4):473–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Nishitani H, Sugimoto N, Roukos V, Nakanishi Y, Saijo M, Obuse C, et al. Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J. 2006;25(5):1126–36.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  128. Senga T, Sivaprasad U, Zhu WG, Park JH, Arias EE, Walter JC, et al. PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination. J Biol Chem. 2006;281(10):6246–52.

    Article  PubMed  CAS  Google Scholar 

  129. Vaziri C, Saxena S, Jeon Y, Lee C, Murata K, Machida Y, et al. A p53-dependent checkpoint pathway prevents rereplication. Mol Cell. 2003;11(4):997–1008.

    Article  PubMed  CAS  Google Scholar 

  130. Zhu WG, Chen YF, Dutta A. Rereplication by depletion of geminin is seen regardless of p53 status and activates a G(2)/M checkpoint. Mol Cell Biol. 2004;24(16):7140–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Bloom J, Cross FR. Novel role for Cdc14 sequestration: Cdc14 dephosphorylates factors that promote DNA replication. Mol Cell Biol. 2007;27(3):842–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Bremmer SC, Hall H, Martinez JS, Eissler CL, Hinrichsen TH, Rossie S, et al. Cdc14 phosphatases preferentially dephosphorylate a subset of cyclin-dependent kinase (Cdk) sites containing phosphoserine. J Biol Chem. 2012;287(3):1662–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  133. Visintin R, Craig K, Hwang ES, Prinz S, Tyers M, Amon A. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell. 1998;2(6):709–18.

    Article  PubMed  CAS  Google Scholar 

  134. Knapp D, Bhoite L, Stillman DJ, Nasmyth K. The transcription factor Swi5 regulates expression of the cyclin kinase inhibitor p40SIC1. Mol Cell Biol. 1996;16(10):5701–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  135. Piatti S, Lengauer C, Nasmyth K. Cdc6 is an unstable protein whose de novo synthesis in G1 is important for the onset of S phase and for preventing a ‘reductional’ anaphase in the budding yeast Saccharomyces cerevisiae. EMBO J. 1995;14(15):3788–99.

    PubMed Central  PubMed  CAS  Google Scholar 

  136. Toyn JH, Johnson AL, Donovan JD, Toone WM, Johnston LH. The Swi5 transcription factor of Saccharomyces cerevisiae has a role in exit from mitosis through induction of the cdk-inhibitor Sic1 in telophase. Genetics. 1997;145(1):85–96.

    PubMed Central  PubMed  CAS  Google Scholar 

  137. Harrison JC, Haber JE. Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet. 2006;40:209–35.

    Article  PubMed  CAS  Google Scholar 

  138. Larner JM, Lee H, Little RD, Dijkwel PA, Schildkraut CL, Hamlin JL. Radiation down-regulates replication origin activity throughout the S phase in mammalian cells. Nucleic Acids Res. 1999;27(3):803–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  139. Melo J, Toczyski D. A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol. 2002;14(2):237–45.

    Article  PubMed  CAS  Google Scholar 

  140. Recolin B, van der Laan S, Tsanov N, Maiorano D. Molecular mechanisms of DNA replication checkpoint activation. Genes (Basel). 2014;5(1):147–75.

    Google Scholar 

  141. Santocanale C, Diffley JF. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature. 1998;395(6702):615–8.

    Article  PubMed  CAS  Google Scholar 

  142. Segurado M, Tercero JA. The S-phase checkpoint: targeting the replication fork. Biol Cell. 2009;101(11):617–27.

    Article  PubMed  CAS  Google Scholar 

  143. Shirahige K, Hori Y, Shiraishi K, Yamashita M, Takahashi K, Obuse C, et al. Regulation of DNA-replication origins during cell-cycle progression. Nature. 1998;395(6702):618–21.

    Article  PubMed  CAS  Google Scholar 

  144. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001;410(6830):842–7.

    Article  PubMed  CAS  Google Scholar 

  145. Cooley C, Dave A, Garg M, Bianchi A. Tel1ATM dictates the replication timing of short yeast telomeres. EMBO Rep. 2014;15(10):1093–101.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  146. Chen MS, Ryan CE, Piwnica-Worms H. Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol. 2003;23(21):7488–97.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  147. Peng CY, Graves PR, Thoma RS, Wu ZQ, Shaw AS, PiwnicaWorms H. Mitotic and G(2) checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science. 1997;277(5331):1501–5.

    Article  PubMed  CAS  Google Scholar 

  148. Sanchez Y, Wong C, Thoma RS, Richman R, Wu RQ, PiwnicaWorms H, et al. Conservation of the Chk1 checkpoint pathway in mammals: Linkage of DNA damage to Cdk regulation through Cdc25. Science. 1997;277(5331):1497–501.

    Article  PubMed  CAS  Google Scholar 

  149. Bazzi M, Mantiero D, Trovesi C, Lucchini G, Longhese MP. Dephosphorylation of gamma H2A by Glc7/protein phosphatase 1 promotes recovery from inhibition of DNA replication. Mol Cell Biol. 2010;30(1):131–45.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  150. Guillemain G, Ma E, Mauger S, Miron S, Thai R, Guerois R, et al. Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae. Mol Cell Biol. 2007;27(9):3378–89.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  151. Leroy C, Lee SE, Vaze MB, Ochsenbein F, Guerois R, Haber JE, et al. PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol Cell. 2003;11(3):827–35.

    Article  PubMed  CAS  Google Scholar 

  152. O'Neill BM, Szyjka SJ, Lis ET, Bailey AO, Yates JR, Aparicio OM, et al. Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage. Proc Natl Acad Sci U S A. 2007;104(22):9290–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  153. Szyjka SJ, Aparicio JG, Viggiani CJ, Knott S, Xu W, Tavare S, et al. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae. Genes Dev. 2008;22(14):1906–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  154. Heideker J, Lis ET, Romesberg FE. Phosphatases, DNA damage checkpoints and checkpoint deactivation. Cell Cycle. 2007;6(24):3058–64.

    Article  PubMed  CAS  Google Scholar 

  155. Hustedt N, Seeber A, Sack R, Tsai-Pflugfelder M, Bhullar B, Vlaming H, et al. Yeast PP4 interacts with ATR homolog Ddc2-Mec1 and regulates checkpoint signaling. Mol Cell. 2015;57(2):273–89.

    Article  PubMed  CAS  Google Scholar 

  156. Freeman AK, Monteiro AN. Phosphatases in the cellular response to DNA damage. Cell Commun Signal. 2010;8:27.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  157. Rivera C, Gurard-Levin ZA, Almouzni G, Loyola A. Histone lysine methylation and chromatin replication. Biochim Biophys Acta. 2014;1839(12):1433–9.

    Article  PubMed  CAS  Google Scholar 

  158. Han J, Li Q, McCullough L, Kettelkamp C, Formosa T, Zhang Z. Ubiquitylation of FACT by the Cullin-E3 ligase Rtt101 connects FACT to DNA replication. Genes Dev. 2010;24(14):1485–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  159. Beck DB, Burton A, Oda H, Ziegler-Birling C, Torres-Padilla M-E, Reinberg D. The role of PR-Set7 in replication licensing depends on Suv4-20 h. Genes Dev. 2012;26(23):2580–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  160. Kuo AJ, Song J, Cheung P, Ishibe-Murakami S, Yamazoe S, Chen JK, et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature. 2012;484(7392):115–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  161. Noguchi K, Vassilev A, Ghosh S, Yates JL, DePamphilis ML. The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo. EMBO J. 2006;25(22):5372–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  162. Bicknell LS, Walker S, Klingseisen A, Stiff T, Leitch A, Kerzendorfer C, et al. Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. Nat Genet. 2011;43(4):350–5.

    Article  PubMed  CAS  Google Scholar 

  163. Bicknell LS, Bongers EM, Leitch A, Brown S, Schoots J, Harley ME, et al. Mutations in the pre-replication complex cause Meier-Gorlin syndrome. Nat Genet. 2011;43(4):356–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  164. Hossain M, Stillman B. Meier-Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication. Genes Dev. 2012;26(16):1797–810.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  165. Eberharter A, Becker PB. Histone acetylation: a switch between repressive and permissive chromatin – second in review series on chromatin dynamics. EMBO Rep. 2002;3(3):224–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  166. Gorisch SM, Wachsmuth M, Toth KF, Lichter P, Rippe K. Histone acetylation increases chromatin accessibility. J Cell Sci. 2005;118(Pt 24):5825–34.

    Article  PubMed  CAS  Google Scholar 

  167. Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M. Histone acetylation regulates the time of replication origin firing. Mol Cell. 2002;1223–33.

    Google Scholar 

  168. Aggarwal BD, Calvi BR. Chromatin regulates origin activity in Drosophila follicle cells. Nature. 2004;430(6997):372–6.

    Article  PubMed  CAS  Google Scholar 

  169. Chen X, Liu G, Leffak M. Activation of a human chromosomal replication origin by protein tethering. Nucleic Acids Res. 2013;41(13):6460–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  170. Yoshida K, Bacal J, Desmarais D, Padioleau I, Tsaponina O, Chabes A, et al. The histone deacetylases Sir2 and Rpd3 Act on ribosomal DNA to control the replication program in budding yeast. Mol Cell. 2014;54(4):691–7.

    Article  PubMed  CAS  Google Scholar 

  171. Smith JS, Boeke JD. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 1997;11(2):241–54.

    Article  PubMed  CAS  Google Scholar 

  172. Mantiero D, Mackenzie A, Donaldson A, Zegerman P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 2011;30(23):4805–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  173. Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol. 2011;21(24):2055–63.

    Article  PubMed  CAS  Google Scholar 

  174. Aparicio JG, Aparicio JG, Viggiani CJ, Viggiani CJ, Gibson DG, Gibson DG, et al. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol Cell Biol. 2004;24(11):4769–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  175. Knott SRV, Viggiani CJ, Tavare S, Aparicio OM. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev. 2009;23(9):1077–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  176. Sivakumar S, Gorbsky GJ. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol. 2015;16(2):82–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  177. Vodermaier HC. APC/C and SCF: controlling each other and the cell cycle. Curr Biol. 2004;14(18):R787–96.

    Article  PubMed  CAS  Google Scholar 

  178. Luke B, Versini G, Jaquenoud M, Zaidi IW, Kurz T, Pintard L, et al. The cullin Rtt101p promotes replication fork progression through damaged DNA and natural pause sites. Curr Biol. 2006;16(8):786–92.

    Article  PubMed  CAS  Google Scholar 

  179. Han J, Zhang H, Zhang H, Wang Z, Zhou H, Zhang Z. A Cul4 E3 ubiquitin ligase regulates histone hand-off during nucleosome assembly. Cell. 2013;155(4):817–29.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  180. Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, Zhao X. Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the Mec1 checkpoint. Mol Cell. 2012;45(3):422–332.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolan Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wei, L., Zhao, X. (2016). Role of Posttranslational Modifications in Replication Initiation. In: Kaplan, D. (eds) The Initiation of DNA Replication in Eukaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-24696-3_18

Download citation

Publish with us

Policies and ethics