Skip to main content

The Role of Mcm10 in Replication Initiation

  • Chapter
  • First Online:
  • 1539 Accesses

Abstract

Minichromosome maintenance protein 10 (Mcm10) is a conserved component of the eukaryotic DNA replication machinery. Mcm10 promotes the initiation of replication by facilitating DNA unwinding and origin firing. Although the molecular details of this action remain unclear, current data support a scaffolding role for Mcm10 via interactions with DNA and other protein partners. Mcm10 binds both single- and double-stranded DNA, as well as components of the CMG helicase complex, DNA polymerase-α, and Ctf4. Upon initiation, Mcm10 becomes part of the replisome, primarily mediating the initiation of Okazaki fragment synthesis, which involves DNA polymerase-α/primase and the replication clamp PCNA. Mcm10 likely contributes to the recruitment of both of these factors. Emerging concepts predict that steady-state levels of Mcm10 are tightly controlled to balance origin firing and fork progression. Investigations into the cellular requirements for Mcm10 have also revealed a key role in maintaining genome stability. Accordingly, it is not surprising that genetic alterations of MCM10 are associated with cancer. Loss of Mcm10 function is a possible source of DNA damage, whereas overexpression of Mcm10 might serve to facilitate rapid DNA synthesis and proliferation. In this chapter, we provide a comprehensive review of the current literature describing Mcm10’s role in replication initiation. Additionally, we consider how contributions to elongation and other potential functions may affect chromosomal integrity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dumas LB, Lussky JP, McFarland EJ, Shampay J. New temperature-sensitive mutants of Saccharomyces cerevisiae affecting DNA replication. Mol Gen Genet. 1982;187(1):42–6.

    Article  PubMed  CAS  Google Scholar 

  2. Solomon NA, Wright MB, Chang S, Buckley AM, Dumas LB, Gaber RF. Genetic and molecular analysis of DNA43 and DNA52: two new cell-cycle genes in Saccharomyces cerevisiae. Yeast. 1992;8(4):273–89.

    Article  PubMed  CAS  Google Scholar 

  3. Maine GT, Sinha P, Tye BK. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics. 1984;106(3):365–85.

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Merchant AM, Kawasaki Y, Chen Y, Lei M, Tye BK. A lesion in the DNA replication initiation factor Mcm10 induces pausing of elongation forks through chromosomal replication origins in Saccharomyces cerevisiae. Mol Cell Biol. 1997;17(6):3261–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Aves SJ, Tongue N, Foster AJ, Hart EA. The essential Schizosaccharomyces pombe cdc23 DNA replication gene shares structural and functional homology with the Saccharomyces cerevisiae DNA43 (MCM10) gene. Curr Genet. 1998;34(3):164–71.

    Article  PubMed  CAS  Google Scholar 

  6. Christensen TW, Tye BK. Drosophila MCM10 interacts with members of the prereplication complex and is required for proper chromosome condensation. Mol Biol Cell. 2003;14(6):2206–15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Izumi M, Yanagi K, Mizuno T, Yokoi M, Kawasaki Y, Moon KY, et al. The human homolog of Saccharomyces cerevisiae Mcm10 interacts with replication factors and dissociates from nuclease-resistant nuclear structures in G(2) phase. Nucleic Acids Res. 2000;28(23):4769–77.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Lim HJ, Jeon Y, Jeon CH, Kim JH, Lee H. Targeted disruption of Mcm10 causes defective embryonic cell proliferation and early embryo lethality. Biochim Biophys Acta. 2011;1813(10):1777–83.

    Article  PubMed  CAS  Google Scholar 

  9. Wohlschlegel JA, Dhar SK, Prokhorova TA, Dutta A, Walter JC. Xenopus Mcm10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45. Mol Cell. 2002;9(2):233–40.

    Article  PubMed  CAS  Google Scholar 

  10. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.

    Article  PubMed  CAS  Google Scholar 

  11. Du W, Josephrajan A, Adhikary S, Bowles T, Bielinsky AK, Eichman BF. Mcm10 self-association is mediated by an N-terminal coiled-coil domain. PLoS One. 2013;8(7):e70518.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Du W, Stauffer ME, Eichman BF. Structural biology of replication initiation factor Mcm10. Subcell Biochem. 2012;62:197–216.

    Article  PubMed  CAS  Google Scholar 

  13. Robertson PD, Warren EM, Zhang H, Friedman DB, Lary JW, Cole JL, et al. Domain architecture and biochemical characterization of vertebrate Mcm10. J Biol Chem. 2008;283(6):3338–48.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Fatoba ST, Tognetti S, Berto M, Leo E, Mulvey CM, Godovac-Zimmermann J, et al. Human SIRT1 regulates DNA binding and stability of the Mcm10 DNA replication factor via deacetylation. Nucleic Acids Res. 2013;41(7):4065–79.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Fien K, Cho YS, Lee JK, Raychaudhuri S, Tappin I, Hurwitz J. Primer utilization by DNA polymerase alpha-primase is influenced by its interaction with Mcm10p. J Biol Chem. 2004;279(16):16144–53.

    Article  PubMed  CAS  Google Scholar 

  16. Ricke RM, Bielinsky AK. Mcm10 regulates the stability and chromatin association of DNA polymerase-alpha. Mol Cell. 2004;16(2):173–85.

    Article  PubMed  CAS  Google Scholar 

  17. Ricke RM, Bielinsky AK. A conserved Hsp10-like domain in Mcm10 is required to stabilize the catalytic subunit of DNA polymerase-alpha in budding yeast. J Biol Chem. 2006;281(27):18414–25.

    Article  PubMed  CAS  Google Scholar 

  18. Thu YM, Bielinsky AK. Enigmatic roles of Mcm10 in DNA replication. Trends Biochem Sci. 2013;38(4):184–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Warren EM, Huang H, Fanning E, Chazin WJ, Eichman BF. Physical interactions between Mcm10, DNA, and DNA polymerase alpha. J Biol Chem. 2009;284(36):24662–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Cook CR, Kung G, Peterson FC, Volkman BF, Lei M. A novel zinc finger is required for Mcm10 homocomplex assembly. J Biol Chem. 2003;278(38):36051–8.

    Article  PubMed  CAS  Google Scholar 

  21. Okorokov AL, Waugh A, Hodgkinson J, Murthy A, Hong HK, Leo E, et al. Hexameric ring structure of human MCM10 DNA replication factor. EMBO Rep. 2007;8(10):925–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Warren EM, Vaithiyalingam S, Haworth J, Greer B, Bielinsky AK, Chazin WJ, et al. Structural basis for DNA binding by replication initiator Mcm10. Structure. 2008;16(12):1892–901.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Di Perna R, Aria V, De Falco M, Sannino V, Okorokov AL, Pisani FM, et al. The physical interaction of Mcm10 with Cdc45 modulates their DNA-binding properties. Biochem J. 2013;454(2):333–43.

    Article  PubMed  CAS  Google Scholar 

  24. Robertson PD, Chagot B, Chazin WJ, Eichman BF. Solution NMR structure of the C-terminal DNA binding domain of Mcm10 reveals a conserved MCM motif. J Biol Chem. 2010;285(30):22942–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Eisenberg S, Korza G, Carson J, Liachko I, Tye BK. Novel DNA binding properties of the Mcm10 protein from Saccharomyces cerevisiae. J Biol Chem. 2009;284(37):25412–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Alver RC, Zhang T, Josephrajan A, Fultz BL, Hendrix CJ, Das-Bradoo S, et al. The N-terminus of Mcm10 is important for interaction with the 9-1-1 clamp and in resistance to DNA damage. Nucleic Acids Res. 2014;42(13):8389–404.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Das-Bradoo S, Ricke RM, Bielinsky AK. Interaction between PCNA and diubiquitinated Mcm10 is essential for cell growth in budding yeast. Mol Cell Biol. 2006;26(13):4806–17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Dua R, Levy DL, Li CM, Snow PM, Campbell JL. In vivo reconstitution of Saccharomyces cerevisiae DNA polymerase epsilon in insect cells. Purification and characterization. J Biol Chem. 2002;277(10):7889–96.

    Article  PubMed  CAS  Google Scholar 

  29. Schmidt KH, Derry KL, Kolodner RD. Saccharomyces cerevisiae RRM3, a 5′ to 3′ DNA helicase, physically interacts with proliferating cell nuclear antigen. J Biol Chem. 2002;277(47):45331–7.

    Article  PubMed  CAS  Google Scholar 

  30. Vivona JB, Kelman Z. The diverse spectrum of sliding clamp interacting proteins. FEBS Lett. 2003;546(2–3):167–72.

    Article  PubMed  CAS  Google Scholar 

  31. Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, et al. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A. 2009;106(48):20240–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem. 2010;79:89–130.

    Article  PubMed  CAS  Google Scholar 

  33. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139(4):719–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Bleichert F, Botchan MR, Berger JM. Crystal structure of the eukaryotic origin recognition complex. Nature. 2015;519(7543):321–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP. Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell. 2015;161(3):513–25.

    Article  PubMed  CAS  Google Scholar 

  36. Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37(2):247–58.

    Article  PubMed  CAS  Google Scholar 

  37. Sheu YJ, Stillman B. Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol Cell. 2006;24(1):101–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature. 2007;445(7125):328–32.

    Article  PubMed  CAS  Google Scholar 

  39. Zegerman P, Diffley JF. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature. 2007;445(7125):281–5.

    Article  PubMed  CAS  Google Scholar 

  40. Tanaka T, Umemori T, Endo S, Muramatsu S, Kanemaki M, Kamimura Y, et al. Sld7, an Sld3-associated protein required for efficient chromosomal DNA replication in budding yeast. EMBO J. 2011;30(10):2019–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Bochman ML, Schwacha A. The Mcm2-7 complex has in vitro helicase activity. Mol Cell. 2008;31(2):287–93.

    Article  PubMed  CAS  Google Scholar 

  42. Moyer SE, Lewis PW, Botchan MR. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A. 2006;103(27):10236–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell. 2011;146(6):931–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, et al. Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev. 2014;28(20):2291–303.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Bruck I, Kaplan DL. The Dbf4-Cdc7 kinase promotes Mcm2-7 ring opening to allow for single-stranded DNA extrusion and helicase assembly. J Biol Chem. 2015;290(2):1210–21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Hart EA, Bryant JA, Moore K, Aves SJ. Fission yeast Cdc23 interactions with DNA replication initiation proteins. Curr Genet. 2002;41(5):342–8.

    Article  PubMed  CAS  Google Scholar 

  47. Homesley L, Lei M, Kawasaki Y, Sawyer S, Christensen T, Tye BK. Mcm10 and the MCM2-7 complex interact to initiate DNA synthesis and to release replication factors from origins. Genes Dev. 2000;14(8):913–26.

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Lee JK, Seo YS, Hurwitz J. The Cdc23 (Mcm10) protein is required for the phosphorylation of minichromosome maintenance complex by the Dfp1-Hsk1 kinase. Proc Natl Acad Sci U S A. 2003;100(5):2334–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Sawyer SL, Cheng IH, Chai W, Tye BK. Mcm10 and Cdc45 cooperate in origin activation in Saccharomyces cerevisiae. J Mol Biol. 2004;340(2):195–202.

    Article  PubMed  CAS  Google Scholar 

  50. Kawasaki Y, Hiraga S, Sugino A. Interactions between Mcm10p and other replication factors are required for proper initiation and elongation of chromosomal DNA replication in Saccharomyces cerevisiae. Genes Cells. 2000;5(12):975–89.

    Article  PubMed  CAS  Google Scholar 

  51. Xu X, Rochette PJ, Feyissa EA, Su TV, Liu Y. MCM10 mediates RECQ4 association with MCM2-7 helicase complex during DNA replication. EMBO J. 2009;28(19):3005–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Araki Y, Kawasaki Y, Sasanuma H, Tye BK, Sugino A. Budding yeast mcm10/dna43 mutant requires a novel repair pathway for viability. Genes Cells. 2003;8(5):465–80.

    Article  PubMed  CAS  Google Scholar 

  53. Izumi M, Yatagai F, Hanaoka F. Cell cycle-dependent proteolysis and phosphorylation of human Mcm10. J Biol Chem. 2001;276(51):48526–31.

    PubMed  CAS  Google Scholar 

  54. Kaur M, Sharma A, Khan M, Kar A, Saxena S. Mcm10 proteolysis initiates before the onset of M-phase. BMC Cell Biol. 2010;11:84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Sharma A, Kaur M, Kar A, Ranade SM, Saxena S. Ultraviolet radiation stress triggers the down-regulation of essential replication factor Mcm10. J Biol Chem. 2010;285(11):8352–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Lan W, Chen S, Tong L. MicroRNA-215 regulates fibroblast function: insights from a human fibrotic disease. Cell Cycle. 2015;14(12):1973–84.

    Google Scholar 

  57. Yoshida K, Inoue I. Expression of MCM10 and TopBP1 is regulated by cell proliferation and UV irradiation via the E2F transcription factor. Oncogene. 2004;23(37):6250–60.

    Article  PubMed  CAS  Google Scholar 

  58. Watase G, Takisawa H, Kanemaki MT. Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS. Curr Biol. 2012;22(4):343–9.

    Article  PubMed  CAS  Google Scholar 

  59. Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, et al. A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J. 2009;28(19):2992–3004.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Gregan J, Lindner K, Brimage L, Franklin R, Namdar M, Hart EA, et al. Fission yeast Cdc23/Mcm10 functions after pre-replicative complex formation to promote Cdc45 chromatin binding. Mol Biol Cell. 2003;14(9):3876–87.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell. 2011;146(1):80–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Im JS, Ki SH, Farina A, Jung DS, Hurwitz J, Lee JK. Assembly of the Cdc45-Mcm2-7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc Natl Acad Sci U S A. 2009;106(37):15628–32.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Im JS, Park SY, Cho WH, Bae SH, Hurwitz J, Lee JK. RecQL4 is required for the association of Mcm10 and Ctf4 with replication origins in human cells. Cell Cycle. 2015;14(7):1001–9.

    Google Scholar 

  64. On KF, Beuron F, Frith D, Snijders AP, Morris EP, Diffley JF. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. EMBO J. 2014;33(6):605–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature. 2015;519(7544):431–5.

    Google Scholar 

  66. Donovan S, Harwood J, Drury LS, Diffley JF. Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci U S A. 1997;94(11):5611–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Edwards MC, Tutter AV, Cvetic C, Gilbert CH, Prokhorova TA, Walter JC. MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J Biol Chem. 2002;277(36):33049–57.

    Article  PubMed  CAS  Google Scholar 

  68. Lei M, Kawasaki Y, Tye BK. Physical interactions among Mcm proteins and effects of Mcm dosage on DNA replication in Saccharomyces cerevisiae. Mol Cell Biol. 1996;16(9):5081–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Mahbubani HM, Chong JP, Chevalier S, Thommes P, Blow JJ. Cell cycle regulation of the replication licensing system: involvement of a Cdk-dependent inhibitor. J Cell Biol. 1997;136(1):125–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Kanke M, Kodama Y, Takahashi TS, Nakagawa T, Masukata H. Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO J. 2012;31(9):2182–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. van Deursen F, Sengupta S, De Piccoli G, Sanchez-Diaz A, Labib K. Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO J. 2012;31(9):2195–206.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Yu C, Gan H, Han J, Zhou ZX, Jia S, Chabes A, et al. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol Cell. 2014;56(4):551–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK, Wohlschlegel JA, et al. Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. Genes Dev. 2007;21(18):2288–99.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Yang X, Gregan J, Lindner K, Young H, Kearsey SE. Nuclear distribution and chromatin association of DNA polymerase alpha-primase is affected by TEV protease cleavage of Cdc23 (Mcm10) in fission yeast. BMC Mol Biol. 2005;6:13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Kunkel TA, Burgers PM. Dividing the workload at a eukaryotic replication fork. Trends Cell Biol. 2008;18(11):521–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PM, Kunkel TA. Division of labor at the eukaryotic replication fork. Mol Cell. 2008;30(2):137–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC. Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell. 2006;21(4):581–7.

    Article  PubMed  CAS  Google Scholar 

  78. Alabert C, Bukowski-Wills JC, Lee SB, Kustatscher G, Nakamura K, de Lima Alves F, et al. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat Cell Biol. 2014;16(3):281–93.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Aparicio OM, Weinstein DM, Bell SP. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell. 1997;91(1):59–69.

    Article  PubMed  CAS  Google Scholar 

  80. Taylor M, Moore K, Murray J, Aves SJ, Price C. Mcm10 interacts with Rad4/Cut5(TopBP1) and its association with origins of DNA replication is dependent on Rad4/Cut5(TopBP1). DNA Repair (Amst). 2011;10(11):1154–63.

    Article  CAS  Google Scholar 

  81. Nasheuer HP, Grosse F. Immunoaffinity-purified DNA polymerase alpha displays novel properties. Biochemistry. 1987;26(25):8458–66.

    Article  PubMed  CAS  Google Scholar 

  82. Kouprina N, Kroll E, Bannikov V, Bliskovsky V, Gizatullin R, Kirillov A, et al. CTF4 (CHL15) mutants exhibit defective DNA metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 1992;12(12):5736–47.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Apger J, Reubens M, Henderson L, Gouge CA, Ilic N, Zhou HH, et al. Multiple functions for Drosophila Mcm10 suggested through analysis of two Mcm10 mutant alleles. Genetics. 2010;185(4):1151–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Gosnell JA, Christensen TW. Drosophila Ctf4 is essential for efficient DNA replication and normal cell cycle progression. BMC Mol Biol. 2011;12:13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Chattopadhyay S, Bielinsky AK. Human Mcm10 regulates the catalytic subunit of DNA polymerase-alpha and prevents DNA damage during replication. Mol Biol Cell. 2007;18(10):4085–95.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Haworth J, Alver RC, Anderson M, Bielinsky AK. Ubc4 and Not4 regulate steady-state levels of DNA polymerase-alpha to promote efficient and accurate DNA replication. Mol Biol Cell. 2010;21(18):3205–19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Lee C, Liachko I, Bouten R, Kelman Z, Tye BK. Alternative mechanisms for coordinating polymerase alpha and MCM helicase. Mol Cell Biol. 2010;30(2):423–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Wang J, Wu R, Lu Y, Liang C. Ctf4p facilitates Mcm10p to promote DNA replication in budding yeast. Biochem Biophys Res Commun. 2010;395(3):336–41.

    Article  PubMed  CAS  Google Scholar 

  89. Wawrousek KE, Fortini BK, Polaczek P, Chen L, Liu Q, Dunphy WG, et al. Xenopus DNA2 is a helicase/nuclease that is found in complexes with replication proteins And-1/Ctf4 and Mcm10 and DSB response proteins Nbs1 and ATM. Cell Cycle. 2010;9(6):1156–66.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Simon AC, Zhou JC, Perera RL, van Deursen F, Evrin C, Ivanova ME, et al. A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome. Nature. 2014;510(7504):293–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Fumasoni M, Zwicky K, Vanoli F, Lopes M, Branzei D. Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polalpha/Primase/Ctf4 complex. Mol Cell. 2015;57(5):812–23.

    Google Scholar 

  92. Kim S, Dallmann HG, McHenry CS, Marians KJ. tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork. J Biol Chem. 1996;271(35):21406–12.

    Article  PubMed  CAS  Google Scholar 

  93. Kim S, Dallmann HG, McHenry CS, Marians KJ. Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell. 1996;84(4):643–50.

    Article  PubMed  CAS  Google Scholar 

  94. Kurth I, O’Donnell M. New insights into replisome fluidity during chromosome replication. Trends Biochem Sci. 2013;38(4):195–203.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Dalrymple BP, Kongsuwan K, Wijffels G, Dixon NE, Jennings PA. A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proc Natl Acad Sci U S A. 2001;98(20):11627–32.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Thu YM, Bielinsky AK. MCM10: one tool for all-Integrity, maintenance and damage control. Semin Cell Dev Biol. 2014;30:121–30.

    Article  PubMed  CAS  Google Scholar 

  97. Ellison V, Stillman B. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5′ recessed DNA. PLoS Biol. 2003;1(2):E33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Majka J, Binz SK, Wold MS, Burgers PM. Replication protein A directs loading of the DNA damage checkpoint clamp to 5′-DNA junctions. J Biol Chem. 2006;281(38):27855–61.

    Article  PubMed  CAS  Google Scholar 

  99. Becker JR, Nguyen HD, Wang X, Bielinsky AK. Mcm10 deficiency causes defective-replisome-induced mutagenesis and a dependency on error-free postreplicative repair. Cell Cycle. 2014;13(11):1737–48.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Miotto B, Chibi M, Xie P, Koundrioukoff S, Moolman-Smook H, Pugh D, et al. The RBBP6/ZBTB38/MCM10 axis regulates DNA replication and common fragile site stability. Cell Rep. 2014;7(2):575–87.

    Article  PubMed  CAS  Google Scholar 

  101. Davies SL, North PS, Hickson ID. Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nat Struct Mol Biol. 2007;14(7):677–9.

    Article  PubMed  CAS  Google Scholar 

  102. Rosenberg C, Florijn RJ, Van de Rijke FM, Blonden LA, Raap TK, Van Ommen GJ, et al. High resolution DNA fiber-fish on yeast artificial chromosomes: direct visualization of DNA replication. Nat Genet. 1995;10(4):477–9.

    Article  PubMed  CAS  Google Scholar 

  103. Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, et al. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell. 2011;41(5):543–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  104. Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, et al. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol. 2006;173(5):673–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Lukas C, Savic V, Bekker-Jensen S, Doil C, Neumann B, Pedersen RS, et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol. 2011;13(3):243–53.

    Article  PubMed  CAS  Google Scholar 

  106. Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC, Guan A, et al. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell. 2009;35(2):228–39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Park JH, Bang SW, Jeon Y, Kang S, Hwang DS. Knockdown of human MCM10 exhibits delayed and incomplete chromosome replication. Biochem Biophys Res Commun. 2008;365(3):575–82.

    Article  PubMed  CAS  Google Scholar 

  108. Park JH, Bang SW, Kim SH, Hwang DS. Knockdown of human MCM10 activates G2 checkpoint pathway. Biochem Biophys Res Commun. 2008;365(3):490–5.

    Article  PubMed  CAS  Google Scholar 

  109. Tittel-Elmer M, Alabert C, Pasero P, Cobb JA. The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress. EMBO J. 2009;28(8):1142–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Wu C, Zhu J, Zhang X. Integrating gene expression and protein-protein interaction network to prioritize cancer-associated genes. BMC Bioinformatics. 2012;13:182.

    Article  PubMed Central  PubMed  Google Scholar 

  111. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  PubMed  Google Scholar 

  112. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):l1.

    Article  CAS  Google Scholar 

  113. Kang G, Hwang WC, Do IG, Wang K, Kang SY, Lee J, et al. Exome sequencing identifies early gastric carcinoma as an early stage of advanced gastric cancer. PLoS One. 2013;8(12):e82770.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319(5868):1352–5.

    Article  PubMed  CAS  Google Scholar 

  115. Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC, Shaikh N, et al. Replication stress links structural and numerical cancer chromosomal instability. Nature. 2013;494(7438):492–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Garcia-Aragoncillo E, Carrillo J, Lalli E, Agra N, Gomez-Lopez G, Pestana A, et al. DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewing’s tumor cells. Oncogene. 2008;27(46):6034–43.

    Article  PubMed  CAS  Google Scholar 

  117. Koppen A, Ait-Aissa R, Koster J, van Sluis PG, Ora I, Caron HN, et al. Direct regulation of the minichromosome maintenance complex by MYCN in neuroblastoma. Eur J Cancer. 2007;43(16):2413–22.

    Article  PubMed  CAS  Google Scholar 

  118. Das M, Prasad SB, Yadav SS, Govardhan HB, Pandey LK, Singh S, et al. Over expression of minichromosome maintenance genes is clinically correlated to cervical carcinogenesis. PLoS One. 2013;8(7):e69607.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Nijhawan D, Zack TI, Ren Y, Strickland MR, Lamothe R, Schumacher SE, et al. Cancer vulnerabilities unveiled by genomic loss. Cell. 2012;150(4):842–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Liachko I, Tye BK. Mcm10 is required for the maintenance of transcriptional silencing in Saccharomyces cerevisiae. Genetics. 2005;171(2):503–15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  121. Liachko I, Tye BK. Mcm10 mediates the interaction between DNA replication and silencing machineries. Genetics. 2009;181(2):379–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  122. Vo N, Taga A, Inaba Y, Yoshida H, Cotterill S, Yamaguchi M. Drosophila Mcm10 is required for DNA replication and differentiation in the compound eye. PLoS One. 2014; 9(3):e93450.

    Google Scholar 

  123. Wang JT, Xu X, Alontaga AY, Chen Y, Liu Y. Impaired p32 regulation caused by the lymphoma-prone RECQ4 mutation drives mitochondrial dysfunction. Cell Rep. 2014;7(3):848–58.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge funding from the National Institutes of Health R01 GM074917 to A.K.B. R.M.B. was supported by Cancer Biology Training Grant NIH T32 CA009138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja-Katrin Bielinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baxley, R.M., Thu, Y.M., Bielinsky, AK. (2016). The Role of Mcm10 in Replication Initiation. In: Kaplan, D. (eds) The Initiation of DNA Replication in Eukaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-24696-3_16

Download citation

Publish with us

Policies and ethics