Skip to main content

Human Hematopoietic Development

  • Chapter
  • First Online:
The Development of Immunologic Competence
  • 404 Accesses

Abstract

The existence of the hemangioblast has been proposed for the first time by Sabin and Murray (Sabin 1920; Murray 1932), The first site of hematopoiesis is the yolk sac where mesodermal cells aggregate into clusters to form blood islands or hemangioblasts, consisting of an inner core of hematopoietic cells and an external layer of endothelial cells (Moore and Owen 1965; Moore and Metcalf 1970). The removal of the central cells oprecludes blood formation, but not vascular endothelium differentiation (Goss 1928).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abkowitz JL, Robinson AE, Kale S et al (2003) Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood 102:1249–1253

    Article  CAS  PubMed  Google Scholar 

  • Breier G, Breviario F, Caveda L et al (1996) Molecular cloning and expression of murine vascular endothelial cadherin in early stage development of cardiovascular system. Blood 87:630–641

    CAS  PubMed  Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  CAS  PubMed  Google Scholar 

  • Carlesso N, Cardoso AA (2010) Stem cell regulatory niches and their role in normal and malignant hematopoiesis. Curr Opin Hematol 17:281–286

    Article  CAS  PubMed  Google Scholar 

  • Choi K, Kennedy M, Kazarov A et al (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732

    CAS  PubMed  Google Scholar 

  • Chung YS, Zhang WJ, Arentson E et al (2002) Lineage analysis of the hemangioblast as defined by FLK1 and SCL. Development 129:5511–5520

    Article  CAS  PubMed  Google Scholar 

  • De Bruijn MF, Speck NA, Peeters MC et al (2000) Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 19:2465–2474

    Article  PubMed  PubMed Central  Google Scholar 

  • De Brujin MF, Ma X, Robin C et al (2002) Hematopoietic stem cells localize in the endothelial cell layer in the midgestation mouse aorta. Immunity 16:673–683

    Article  Google Scholar 

  • Doetschman TC, Eistetter H, Katz M et al (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45

    CAS  PubMed  Google Scholar 

  • Dorshkind K, Montecino-Rodriguez E (2007) Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nat Rev Immunol 7:213–219

    Article  CAS  PubMed  Google Scholar 

  • Drake CJ, Fleming PA (2000) Vasculogenesis in the day 6. 5–9. 5 mouse embryo. Blood 95:1671–1679

    CAS  PubMed  Google Scholar 

  • Eichmann A, Corbel C, Nataf V et al (1997) Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor-2. Proc Natl Acad Sci U S A 94:5141–5146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eliasson P, Jonsson JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222:17–22

    Article  CAS  PubMed  Google Scholar 

  • Ema M, Faloon P, Zhang WJ et al (2003) Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes Dev 17:380–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faloon P, Arenstson E, Kazarov A et al (2000) Basic fibroblast growth factor positively regulates hematopoietic development. Development 127:1931–1941

    CAS  PubMed  Google Scholar 

  • Gathings WE, Lawton AR, Cooper MD (1977) Immunofluorescent studies of the development of pre-B cells, B lymphocytes and immunoglobulin isotype diversity in humans. Eur J Immunol 7:804–810

    Article  CAS  PubMed  Google Scholar 

  • Gering M, Rodaway AR, Gottgens B et al (1998) The SCLgene specifies haemangioblast development from early mesoderm. EMBO J 17:4029–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goss C (1928) Experimental removal of the blood island of Amblystoma punctuatum embryos. J Exp Zool 52:45–61

    Article  Google Scholar 

  • Gunji Y, Nakamura M, Osawa H et al (1993) Human primitive hematopoietic progenitors are enriched in KIT low cells than KIT high cells. Blood 82:3283–3289

    CAS  PubMed  Google Scholar 

  • Hayward AR (1981) Development of lymphocyte responses and interactions in the human fetus and newborn. Immunol Rev 57:39–60

    Article  CAS  PubMed  Google Scholar 

  • Huber TL, Kouskoff V, Fehling HJ et al (2004) Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432:625–630

    Article  CAS  PubMed  Google Scholar 

  • Jaffredo T, Gautier R, Eichmann A, Dieterlen-Lievre F (1998) Intraaortichemopoietic cells are derived from endothelial cells during ontogeny. Development 125:4575–4583

    CAS  PubMed  Google Scholar 

  • Kabrun N, Buhring HJ, Choi K et al (1997) Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 124:2039–2048

    CAS  PubMed  Google Scholar 

  • Kallianpur AR, Jordan JE, Brandt SJ (1994) The SCL/TAL-1 gene is expressed in progenitors of both the hematopoetic and vascular systems during embryogenesis. Blood 83:1200–1208

    CAS  PubMed  Google Scholar 

  • Kennedy M, Firpo M, Choi K et al (1997) A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 386:488–493

    Article  CAS  PubMed  Google Scholar 

  • Kopp HG, Avecilla ST, Hooper AT et al (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Phys Chem Chem Phys 20:349–356

    CAS  Google Scholar 

  • Krause DS (2002) Regulation of hematopoietic stem cell fate. Oncogene 21:3262–3269

    Article  CAS  PubMed  Google Scholar 

  • Larsson J, Karlsson S (2005) The role of Smad signaling in hematopoiesis. Oncogene 24:5676–5792

    Article  CAS  PubMed  Google Scholar 

  • Ledbetter JA, Herzenberg LA (1979) Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev 47:63–90

    Article  CAS  PubMed  Google Scholar 

  • Lévesque JP, Helwani FM, Winkler IG (2010) The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 24:1979–1992

    Article  PubMed  Google Scholar 

  • Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66:4553–4557

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    Article  CAS  PubMed  Google Scholar 

  • Lugus JJ, Ching YS, Mills JC et al (2007) GATA2 functions at multiple steps in hemangioblast development and differentiation. Development 134:393–405

    Article  CAS  PubMed  Google Scholar 

  • Marshall CJ, Thrasher AJ (2001) The embryonic origins of human hematopoiesis. Br J Haematol 112:838–850

    Article  CAS  PubMed  Google Scholar 

  • Marshall CJ, Sinclair JC, Thrasher AJ et al (2007) Bone morphogenetic protein 4 modulates c-kit expression and differentiation potential in murine embryonic aorta-gonad-mesonephros haematopoiesis in vitro. Br J Haematol 139:321–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Melchers F (1979) Murine embryonic B lymphocyte development in the placenta. Nature 277:219–221

    Article  CAS  PubMed  Google Scholar 

  • Mendes SC, Robin C, Dzierzak E (2005) Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development 132:1127–1136

    Article  CAS  PubMed  Google Scholar 

  • Miyazono K, Maeda S, Imamura T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signalling cross-talk. Cytokine Growth Factor Rev 16:251–263

    Article  CAS  PubMed  Google Scholar 

  • Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885

    Article  CAS  PubMed  Google Scholar 

  • Moore MAS, Metcalf D (1970) Ontogeny of the haematopoietic system: yolk sac origin of in vivo and in vitro colony forming cell in the developing mouse embryo. Br J Haematol 18:279–286

    Article  CAS  PubMed  Google Scholar 

  • Moore MA, Owen JJ (1965) Chromosome marker studies on the development of the haemopoietic system in the chick embryo. Nature 208:956

    Article  PubMed  Google Scholar 

  • Moore MA, Borxmeyer HE, Sheridan ADC et al (1980) Continuous human bone marrow culture: Ia antigen characterization of probable human pluripotent stem cells. Blood 55:682–690

    CAS  PubMed  Google Scholar 

  • Moser M, Patterson C (2005) Bone morphogenetic proteins and vascular differentiation: BMPing up vasculogenesis. Thromb Haemost 94:713–718

    PubMed  Google Scholar 

  • Murray PDF (1932) The development in vitro of blood of early chick embryo. Proc R Soc Lond Biol Sci 111:497–521

    Article  CAS  Google Scholar 

  • Nishikawa SI, Nishikawa S, Hirashima M et al (1998) Progressive lineage analysis by cell sorting and culture identifies Flk+ VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125:1747–1757

    CAS  PubMed  Google Scholar 

  • North TE, de Bruijn MF, Stacy T et al (2002) Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16:661–672

    Article  CAS  PubMed  Google Scholar 

  • Oberlin E, Tavian M, Blaszek I et al (2002) Blood-forming potential of vascular endothelium in the human embryo. Development 129:4147–4157

    CAS  PubMed  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW et al (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84:321–330

    Article  CAS  PubMed  Google Scholar 

  • Osmond DG (1986) Population dynamics of bone marrow B lymphocytes. Immunol Rev 93:103–124

    Article  CAS  PubMed  Google Scholar 

  • Ottersbach K, Dzierak E (2005) The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell 8:377–387

    Article  CAS  PubMed  Google Scholar 

  • Pardanaud L, Altmann C, Kitos P et al (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349

    CAS  PubMed  Google Scholar 

  • Park C, Afrikanova I, Chung YS et al (2004) A hierarchial order of factors in the generation of FLK-1 and SCL expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development 131:2749–2762

    Article  CAS  PubMed  Google Scholar 

  • Peault BM, Thiery JP, Le Douarin NM (1983) Surface markers for hemopoietic and endothelial cell lineages in quail that is defined by a monoclonal antibody. Proc Natl Acad Sci U S A 80:2976–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry JM, Li L (2007) Disrupting the stem cell niche: good seeds in bad soil. Cell 129:1045–1047

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers MH (2011) Niche contributions to oncogenesis: emerging concepts and implications for the hematopoietic system. Haematologica 96:1041–1048

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizo A, Vellenga E, de Haan G et al (2006) Signaling pathways in self-renewing hematopoietic and leukemic stem cells: do all stem cells need a niche? Human Mol Gen 15 Spec No 2: R210–R219

    Google Scholar 

  • Robb L, Lyons I, Li R et al (1995) Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci U S A 92:7075–7079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabin FR (1920) Studies on the origin of blood vessels and of red blood corpuscles as seen in the living blastoderm of the chick during the second day of incubation. Contrib Embryol 9:213–262

    Google Scholar 

  • Sato T, Lover JH, Ogawa M (1999) Reversible expression of Cd34 murine hematopoietic stem cells. Blood 94:2548

    CAS  PubMed  Google Scholar 

  • Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  CAS  PubMed  Google Scholar 

  • Shepard JL, Zon LI (2000) Development derivation of embryonic and adult macrophages. Curr Opin Hematol 7:3–8

    Article  CAS  PubMed  Google Scholar 

  • Shivdasani RA, Mayer EL, Orkin SH (1995) Absence of blood formation in mice lacking the T-cell lekaemia oncoprotein tal-1/SCL. Nature 373:432–434

    Article  CAS  PubMed  Google Scholar 

  • Solvason N, Kearney JF (1992) The human fetal omentum: a site of B cell generation. J Exp Med 175:397–404

    Article  CAS  PubMed  Google Scholar 

  • Tavian M, Peault B (2005) Embryonic development of the human hematopoietic system. Int J Dev Biol 49:243–250

    Article  CAS  PubMed  Google Scholar 

  • Tavian M, Hallais MF, Peault B (1999a) Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development 126:793–803

    CAS  PubMed  Google Scholar 

  • Tavian M, Cortes F, Charbord P et al (1999b) Emergence of the haematopoietic system in the human embryo and foetus. Haematologica 84:1–3

    PubMed  Google Scholar 

  • Tavian M, Robin C, Coulonbel L et al (2001) The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity 15:487–495

    Article  CAS  PubMed  Google Scholar 

  • Till JE, Mc Culloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213

    Article  CAS  PubMed  Google Scholar 

  • Vogeli KM, Jin SW, Martin GR et al (2006) A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 443:337–339

    Article  CAS  PubMed  Google Scholar 

  • Watt SM, Gschmeissner SE, Bates PA (1995) PECAM-1: its expression and function as a cell adhesion molecule on hemopoietic and endothelial cells. Leuk Lymphoma 17:229–244

    Article  CAS  PubMed  Google Scholar 

  • Weiss L (1981) Hematopoiesis in mammalian bone marrow. Ciba Found Symp 84:5–21

    CAS  PubMed  Google Scholar 

  • Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    Article  CAS  PubMed  Google Scholar 

  • Wilt FH (1974) The beginnings of erythropoiesis in the yolk sac of the chick embryo. Ann N Y Acad Sci 241:99–112

    Article  CAS  PubMed  Google Scholar 

  • Wood HB, MayG HL et al (1997) CD34expression patterns during early mouse development are related to modes of blood vessel formation and reveal additional sites of hematopoiesis. Blood 90:2300–2311

    CAS  PubMed  Google Scholar 

  • Yamashita J, Itoh H, Hirashima M et al (2000) Flk-1 positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92–96

    Article  CAS  PubMed  Google Scholar 

  • Yin T, Li L (2006) The stem cell niches in bone. J Clin Invest 116:1195–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokomizo T, Ogawa M, Osato M et al (2001) Requirement of Runx1/AML1/PEBP2alphaB for the generation of haematopoietic cells from endothelial cells. Genes Cells 6:13–23

    Article  CAS  PubMed  Google Scholar 

  • Young PE, Baumheuter S, Lasky LA (1995) The sialomucin CD34 is expressed on hematopietic cells and blood vessels during murine development. Blood 85:96–105

    CAS  PubMed  Google Scholar 

  • Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ribatti, D. (2015). Human Hematopoietic Development. In: The Development of Immunologic Competence. Springer, Cham. https://doi.org/10.1007/978-3-319-24663-5_2

Download citation

Publish with us

Policies and ethics