Skip to main content

Emergence of Methylobacterium spp. as Potential Organism in Agroecosystems

  • Chapter
  • First Online:
Bacterial Metabolites in Sustainable Agroecosystem

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 12))

Abstract

Methylobacterium spp. includes a group of stringently aerobic, Gram-negative, pink-pigmented, facultatively methylotrophs (PPFM) belonging to α-proteobacteria and are capable of growing on one-carbon compounds, such as formate, formaldehyde, methanol and methylamine or sometimes on multi-carbon compounds like diethyl ether and trimethyl amines. Significance of these bacteria for plant-growth promotion by the possible mechanisms include production of phytohormones, IAA, cytokinins, ACC-deaminase and perform nitrogen metabolism by means of bacterial urease, establish efficient nitrogen (N2)-fixing symbioses by nodulating legume roots; production of exopolysaccharides (EPS) and Poly-β-hydroxybutyrate (PHB) accumulation and abiotic stress endurance. These organisms induce systemic resistance by production of siderophores and proteins like phenylalanine ammonia lyase, peroxidase, chitinase and β-1,3-glucanase and phenolic compounds. On the other hand, they also promote the biodegradation of polycyclic aromatic hydrocarbon (PAH). In spite of their plant-growth promotional traits, commercialization of the Methylobacterium strains as bioinoculant have been hindered constantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abanda-Nkpwatt D, Musch M, Tschiersch J, Boettner M, Schwab W (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57(15):4025–4032

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2010) Plant growth promoting activities of phosphate-solubilizing Enterobacter asburiae as influenced by fungicide. Eur Asian J Biosci 4:88–95

    Article  Google Scholar 

  • Allison AG (1998) Exopolysaccharide production in bacterial biofilm. Biofilm J 3(2):1–19

    Google Scholar 

  • Alvarez MI, Sueldo RJ, Barassi CA (1996) Effect of Azospirillum inoculation on coleoptile growth in wheat seedlings under water stress. Cereal Res Commun 24:101–107

    Google Scholar 

  • Anitha KG (2010) Enhancing seed germination of Mono and Dicotyledons through IAA production of PPFM. Trends Soil Sci Plant Nutr J 1(1):14–18

    Google Scholar 

  • Ardanov P, Sessitsch A, Haggman H, Kozyrovska N, Pirttila AM (2012) Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS ONE 7:10 Article ID e46802

    Google Scholar 

  • Belanger L, Figueira MM, Bourque D, Morel L, Beland M, Larame L, Groleau D, Miguez DB (2004) Production of heterologous protein by Methylobacterium extorquens in high cell density fermentation. FEMS Microbiol Lett 231:197–204

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar PV, Bhosle NB (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci 88(1):45–53

    CAS  Google Scholar 

  • Breuer U, Babel W (1999) Methylobacterium rhodesianum produces poly-3-hydroxybutyrate and after mutagenesis in addition exopolysaccharides. Acta Biotechnol 19:779–786

    Article  Google Scholar 

  • Corpe WA, Rheem S (1989) Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol 62:243–250

    Article  CAS  Google Scholar 

  • Dourado MN, Andreote FD, Dini-Andreote F, Conti R, Araújo JM, Araújo WL (2012) Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche specific plant association. Genet Mol Biol 35:142–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dourado MN, Bogas AC, Pomini AM, Andreote FD, Quecine MC, Marsaioli AJ, Araújo WL (2013) Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules. Brazilian J Microbiol 44(4):1331–1339

    Article  Google Scholar 

  • Farag MA, Pare PW (2002) C6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554

    Article  CAS  PubMed  Google Scholar 

  • Fedorov DN, Doronina NV, Trotsenko YA (2011) Phytosymbiosis of aerobic methylobacteria: new facts and views. Microbiology 80(4):443–454

    Article  CAS  Google Scholar 

  • Fedorov DN, Ekimova GA, Doronina NV, Trotsenko YA (2013) 1-aminocyclopropane-1-carboxylate (ACC) deaminases from Methylobacterium radiotolerans and Methylobacterium nodulans with higher specificity for ACC. FEMS Microbiol Lett 343(1):70–76

    Article  CAS  PubMed  Google Scholar 

  • Freyermuth SK, Long RL, Mathur S, Holland MA, Holstford TP, Stebbins NE, Morris RO, Polacco JC (1996) Metabolic aspects of plant interaction with commensal methylotrophs. In: Lindstorm M, Tabita R (eds) Microbial growth on C1 compounds. Kluwer Academic Publishers, New York, pp 21–134

    Google Scholar 

  • Fusconi R, Godinho MJL (2002) Screening for exopolysaccharide producing bacteria from sub-tropical polluted groundwater. Brazilian J Biol 62(2):363–369

    Article  CAS  Google Scholar 

  • Golberg SB, Flick JS, Rogers SG (1984) Nucleotide sequence of the tmrlocus of Agrobacterium tumefaciens pTiT37 T-DNA. Nucl Acids Res 12:4665–4677

    Google Scholar 

  • Goldstein AH, Lester T, Brown J (2003) Research on the metabolic engineering of the direct oxidation pathway for extraction of phosphate from ore has generated preliminary evidence for PQQ biosynthesis in Escherichia coli as well as a possible role for the highly conserved region of quinoprotein dehydrogenases. Biochimica Biophysica Acta 1647:266–271

    Article  CAS  Google Scholar 

  • Hardoim PR, Overbeek LSV, Elsas JDV (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Holland MA (1997) Occams razor applied to hormonology. Are cytokinins produced by plants? Plant Physiol 115:865–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland MA, Polacco JC (1992) Urease null and hydrogenase null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol 98:942–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland MA, Polacco JC (1994) PPFMs and other contaminants: is there more to plant physiology than just plant. Annu Rev Plant Physiol Plant Mol Biol 45:197–209

    Article  CAS  Google Scholar 

  • Houck DR, Hanners JL, Unkefer CJ (1991) Biosynthesis of pyrroloquinoline quinone. Biosynthetic assembly from glutamate and tyrosine. J Am Chem Soc 113:3162–3166

    Google Scholar 

  • Ivanova EG, Doronina NV, Shepeliakovskaia AO, Laman AG, Brovko FA, TrotsenkoIu A (2000) Facultative and obligate aerobic methylobacteria synthesize cytokinins. Mikrobiologia 69(6):764–769

    CAS  Google Scholar 

  • Ivanova EG, Doronina NV, Trotsenko YA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70(4):392–397

    Article  CAS  Google Scholar 

  • Jaftha JB, Strijdom BW, Steyn PL (2002) Characterization of pigmented methylotrophic bacteria which nodulate Lotononis bainesii. Syst Appl Microbiol 25(3):440–449

    Article  CAS  PubMed  Google Scholar 

  • Jha CK, Patel D, Rajendran N, Saraf M (2010) Combinatorial assessment on dominance and informative diversity of PGPR from rhizosphere of Jatropha curcas L. J Basic Microbiol 50:211–217

    Article  PubMed  Google Scholar 

  • Jha CK, Annapurna K, Saraf M (2012) Isolation of rhizobacteria from jatropha curcas and characterization of produced ACC deaminase. J Basic Microbiol 52:285–295

    Google Scholar 

  • Jing NH, Taha AM, Pakingking RV, Wahabs RAB, Huyop F (2008) Dehalogenase from Methylobacterium sp. HJ1 induced by the herbicide 2,2-dichloropropionate (Dalapon). Afr J Microbiol Res 2:32–36

    Google Scholar 

  • Joe MM, Saravanan VS, Islam MR, Sa T (2014) Development of alginate-based aggregate inoculants of Methylobacterium sp. and Azospirillum brasilense tested under in vitro conditions to promote plant growth. J App Microbiol 116(2):408–423

    Google Scholar 

  • Jourand P, Giraud E, Béna G, Sy A, Willems A, Gillis M, Dreyfus B, De Lajudie P (2004) Methylobacterium nodulans sp. nov. for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273

    Article  CAS  PubMed  Google Scholar 

  • Koenig RL, Morris RO, Polacco JC (2002) tRNA is the source of low-level trans-Zeatin production in Methylobacterium spp. J Bacteriol 184(7):1832–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutschera U (2007) Plant-associated methylobacteria as co-evolved phytosymbionts. Plant Signal Behav 2:74–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwak MJ, Jeong H, Madhaiyan M, Lee Y, Sa TM, Oh TK, Kim JF (2014) Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere. PLoS ONE 9(9):106–110

    Google Scholar 

  • Lacava PT, Silva-Stenico ME, Araújo WL, Simionato AC, Carrilho E, Tsai SM, Azevedo JL (2008) Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. Pauca. Pesqagropec Bras Brasília 43(4):521–528

    Google Scholar 

  • Liu TS, Lee LY, Tai CY, Hung CH, Chang YS, Wolfram JH, Rogers R, Goldstein AH (1992) Cloning of an Erwinia carotovora gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: Nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinine. J Bacteriol 174:5814–5819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Cortes A, Lanz-landazuri A, Garcia-Maldonado JQ. (2008) Screening and isolation of PHB producing bacteria in a polluted marine microbial mat. Microb. Ecol. 56:112–120

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Senthilkumar M, Sundaram S, Chung H, Yang J, Sundaram S, Sa T (2004) Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot Bull Acad Sin 45:315–324

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu JH, Sa TM (2006a) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224(2):268–278

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Reddy BVS, Anandham R (2006b) Plant growth-promoting Methylobacterium induces defense responses in groundnut (Arachis hypogaea L.) compared with rot pathogens. Curr Microbiol 53(4):270–276

    Article  CAS  PubMed  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  CAS  PubMed  Google Scholar 

  • Marx CJ, Lidstrom ME (2001) Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology 147:2065–2075

    Article  CAS  PubMed  Google Scholar 

  • Menna P, Hungria M, Barcellos FG, Bangel EV, Hess PN, Martínez-Romero E (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29:315–332

    Article  CAS  PubMed  Google Scholar 

  • Omer ZS, Tombolini R, Gerhardson B (2004) Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol Ecol 47(3):319–326

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Manna A, Paul AK (1999) Production of (poly-hydroxy butyric acid) and exopolysacharide by Azotobacte rbeijerinckii WDN—01. World J Microbiol Biotechnol 15:15–21

    Article  CAS  Google Scholar 

  • Pomini AM, Cruz PLR, Gai C, Araújo WL, Marsaioli AJ (2009) Long-chain Acyl-Homoserine lactones from Methylobacterium mesophilicum: synthesis and absolute configuration. J Nat Prod 72:2130–2134

    Article  Google Scholar 

  • Poorniammal R, Sundaram SP, Kumutha K (2009) In vitro biocontrol activity of Methylobacterium extorquens against fungal pathogens. Int J Plant Prot 2:59–62

    Google Scholar 

  • Rekadwad BN (2014) Growth promotion of crop plants by Methylobacterium organophilum: efficient bioinoculant and bio-fertilizer isolated from mud. Res Biotechnol 5(5):01–06

    Google Scholar 

  • Sandmann G (2009) Evolution of carotene desaturation: the complication of a simple pathway. Arch Biochem Biophys 483:169–174

    Article  CAS  PubMed  Google Scholar 

  • Saraf M, Jha CK, Patel D (2010) The role of ACC deaminase producing PGPR in sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin Heidelberg, pp 365–385

    Chapter  Google Scholar 

  • Scier MH (1998) Proposed independent evolution of different channel and carrier families. In: Poole RK (ed) Advances in microbial physiology. Academic Press, London, pp 81–136

    Chapter  Google Scholar 

  • Senthil Kumar M, Madhaiyan M, Sundaram SP, Kannaiyan S (2009) Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. Cv CO-43). Microbes Res. 164(1):92–104.

    Google Scholar 

  • Shaharoona B, Arshad M, Khalid A (2007) Differential response of etiolated pea seedling to 1-aminocyclopropane-1-carboxylate and/or L-methionine utilizing rhizobacteria. J Microbiol 45(1):15–20

    CAS  PubMed  Google Scholar 

  • Silva Stenico ME, Pacheco FTH, Rodriques JLM, Carrilho E, Tsai SM (2005) Growth and siderophore production of Xylella fastidiosa under iron-limited conditions. Microbiol Res 160(1):429–436

    Article  CAS  PubMed  Google Scholar 

  • Smejkalova H, Erb TJ, Fuchs G (2010) Methanol assimilation in Methylobacterium extorquens AM1: demonstration of all enzymes and their regulation. PLoS ONE 5(10):e13001

    Article  PubMed  PubMed Central  Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, De Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sy A, Timmers ACJ, Knief C, Vorholt JA (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. App Environ Microbiol 71(11):7245–7252

    Article  CAS  Google Scholar 

  • Tani A, Sahin N, Matsuyama Y, Enomoto T, Nishimura N, Yokota A, Kimbara K (2012) High-throughput identification and screening of novel Methylobacterium species using whole-cell MALDI-TOF/MS analysis. PLoS ONE 7(7):1–13

    Article  Google Scholar 

  • Vaidehi K, Sekar C (2012) Amino acid conjugated hydroxamate type of siderophore production in Methylobacterium phyllosphaerae MB-5. CIBtech J microbiol 1(1):25–30

    Google Scholar 

  • Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, an octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides nigra DN34). App. Environ Microbiol 70(1):508–517

    Article  Google Scholar 

  • Van Loon LC (2000) Systemic induced resistance. In: Slusarenko AJ, Fraser RSS, Van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer, Dordrechet, pp 521–574

    Chapter  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere 660 bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Ventorino V, Sannino F, Piccolo A, Cafaro V, Carotenuto R, Pepe O (2014) Methylobacterium populi VP2: plant growth-promoting bacterium isolated from a highly polluted environment for polycyclic aromatic hydrocarbon (PAH) biodegradation. Sci World J Article ID 931793, 11 pages

    Google Scholar 

  • Verginer M, Siegmund B, Cardinale M et al (2010) Monitoring the plant epiphyte Methylobacterium extorquens DSM21961 by real-time PCR and its influence on the strawberry flavor. FEMS Microbiol Ecol 74:136–145

    Article  CAS  PubMed  Google Scholar 

  • Vorholt JA (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178(4):239–249

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Song S, Tian H, Liu T (2014) Effects of phenanthrene on seed germination and some physiological activities of wheat seedling. Compets Rendus Biol 337(2):95–100

    Google Scholar 

  • White EW, Winans SC (2007) Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. Phil Trans R Soc B 362:1135–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo S, Subramanian P, Ramasamy K, Joe MM, Sa T (2012) EPS production, PHB accumulation and abiotic stress endurance of plant growth promoting Methylobacterium strains grown in a high carbon concentration. Korean J Soil SciFert 45(4):572–581

    Article  CAS  Google Scholar 

  • Zahra BMH, Ebrahim VF, Abbas SS, Ramin K (2009) Media selection for poly hydroxybutyrate production from methanol by Methylobacterium extorquens DSMZ 1340. Iran J Chem Eng 28(3):45–52

    Google Scholar 

  • Zhu H, Sun SJ (2008) Inhibition of bacterial quorum sensing regulated behaviors by Tremella fuciformis extract. Curr Microbiol 57:418–422

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Saraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jha, C.K., Maheshwari, D.K., Saraf, M. (2015). Emergence of Methylobacterium spp. as Potential Organism in Agroecosystems. In: Maheshwari, D. (eds) Bacterial Metabolites in Sustainable Agroecosystem. Sustainable Development and Biodiversity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-24654-3_3

Download citation

Publish with us

Policies and ethics