Skip to main content

Biofilm Formation and Biosurfactant Activity in Plant-Associated Bacteria

  • Chapter
  • First Online:
Book cover Bacterial Metabolites in Sustainable Agroecosystem

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 12))

Abstract

Biofilms are structurally complex communities of microbial cells that adhere to a surface and are surrounded by an extracellular polymeric matrix. Biofilm formation plays important roles in attachment and colonization of plant surfaces by both beneficial bacteria (e.g. plant growth-promoting rhizobacteria) and phytopathogenic bacteria. During the process of biofilm development and maturation, surface-attached cells undergo aggregation to form microcolonies. Biosurfactants are produced by many plant-associated bacterial species and play essential roles in bacterial motility, signaling, biofilm formation and control of plant-bacteria interactions. In this chapter, we review the biochemical and genetic mechanisms that underlie biofilm formation and biosurfactant activity in beneficial (symbiotic) bacteria and phytopathogenic bacteria, particularly Pseudomonas species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mawgoud AM, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsohim AS, Taylor TB, Barrett GA, Gallie J, Zhang XX, Altamirano-Junqueira AE, Johnson LJ, Rainey PB, Jackson RW (2014) The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion. Environ Microbiol 16:2267–2281

    Article  CAS  PubMed  Google Scholar 

  • Arguelles-Arias A, Ongena M, Halimi B, Yannick L, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 8:63–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Balsanelli E, Baura VA, Pedrosa FO, Souza EM, Monteiro RA (2014) Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by Herbaspirillum seropedicae. PLoS ONE 9:e110392. doi:10.1371/journal.pone.0110392

    Article  PubMed  PubMed Central  Google Scholar 

  • Banat IM, Díaz De Rienzo MA, Quinn GA (2014) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98:9915–9929

    Google Scholar 

  • Bogino P, Oliva MM, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14:15838–15859

    Article  PubMed  PubMed Central  Google Scholar 

  • Burch AY, Zeisler V, Yokota K, Schreiber L, Lindow SE (2014) The hygroscopic biosurfactant syringafactin produced by Pseudomonas syringae enhances fitness on leaf surfaces during fluctuating humidity. Environ Microbiol 16:2086–2098

    Article  CAS  PubMed  Google Scholar 

  • Burdman S, Okon Y, Jurkevitch E (2000) Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26:91–110

    Article  CAS  PubMed  Google Scholar 

  • Burmølle M, Ren D, Bjarnshol T, Sørensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22:84–91

    Article  PubMed  Google Scholar 

  • Connell JL, Wessel AK, Parsek MR, Ellington AD, Whiteley M, Shear JB (2010) Probing prokaryotic social behaviors with bacterial ‘‘lobster traps’’. Mol Biol 1:1–8

    Google Scholar 

  • Costa SG, Deziel E, Lepine F (2011) Characterization of rhamnolipid production by Burkholderia glumae. Lett Appl Microbiol 53:620–627

    Article  CAS  PubMed  Google Scholar 

  • D’aes J, De Maeyer K, Pauwelyn E, Höfte M (2010) Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol. Environ Microbiol Rep 2:359–372

    Article  PubMed  Google Scholar 

  • Daniels R, Reynaert S, Hoekstra H, Verreth C, Janssens J, Braeken K, Fauvart M, Beullens S, Heusdens C, Lambrichts I, De Vos DE, Vanderleyden J, Vermant J, Michiels J (2006) Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci USA 103:14965–14970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    Article  CAS  PubMed  Google Scholar 

  • Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403

    Article  CAS  PubMed  Google Scholar 

  • De Hoff PL, Brill LM, Hirsch AM (2009) Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet Genomics 282:1–15

    Article  PubMed  PubMed Central  Google Scholar 

  • Decho AW, Norman RS, Visscher PT (2010) Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol 18:73–80

    Article  CAS  PubMed  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dusane DH, Nancharaiah YV, Zinjarde SS, Venugopalan VP (2010) Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms. Colloids Surf B: Biointerfaces 81:242–248

    Google Scholar 

  • Dusane DH, Dam S, Nancharaiah YV, Kumar AR, Venugopalan VP, Zinjarde SS (2012) Disruption of Yarrowia lipolytica biofilms by rhamnolipid biosurfactant. Aquat Biosyst 8:17

    Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Si Technol 112:617–627

    Article  CAS  Google Scholar 

  • Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380

    Article  CAS  PubMed  Google Scholar 

  • Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Coggin A, Yagnik K, Teplitski M (2012) Role of specific quorum-sensing signals in the regulation of exopolysaccharide II production within Sinorhizobium meliloti spreading colonies. PLoS ONE 7:e42611. doi:10.1371/journal.pone.0042611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056

    Article  CAS  Google Scholar 

  • Gjermansen M, Nilsson M, Yang L, Tolker-Nielsen T (2010) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol 75:815–826

    Article  CAS  PubMed  Google Scholar 

  • Gurich N, González JE (2009) Role of quorum sensing in Sinorhizobium meliloti-Alfalfa symbiosis. J Bacteriol 191:4372–4382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch AM, Fujishige NA (2012) Molecular signals and receptors: communication between nitrogen-fixing bacteria and their plant hosts. In: Wizany G, Baluska F (eds) Biocommunication in plants, vol 14. Springer, Berlin, pp 255–280

    Chapter  Google Scholar 

  • Janek T, Lukaszewicz M, Rezanka T, Krasowska A (2010) Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour Technol 101:6118–6123

    Article  CAS  PubMed  Google Scholar 

  • Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. Microbiol Monogr 20:57–91

    Article  Google Scholar 

  • Jefferson KK (2009) In: Ullrich M (ed) Bacterial polysaccharides: current innovations and future trends. Caister Academic Press, Norfolk, pp 175–186

    Google Scholar 

  • Jofré E, Lagares A, Mori G (2004) Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharide production and root colonization in Azospirillum brasilense. FEMS Microbiol 231:267–275

    Article  Google Scholar 

  • Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keith RC, Keith LM, Hernandez-Guzman G, Uppalapati SR, Bender CL (2003) Alginate gene expression by Pseudomonas syringae pv. tomato DC3000 in host and non-host plants. Microbiology 149:1127–1138

    Article  CAS  PubMed  Google Scholar 

  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328:627–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi M, Fukuoka T, Morita T, Imura T, Kitamoto D (2008) Production of new types of sophorolipids by Candida batistae. J Oleo Sci 57:359–369

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Morita T, Fukuoha T, Imura T, Kakugawa K, Kitamoto D (2007) Production of different types of mannosylerythritol lipids as biosurfactant by the newly isolated yeast strains belonging to the genus Pseudozyma. Appl Microbiol Biotechnol 75:521–531

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GEM, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51:97–113

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Price NPJ, Ray KJ, Kuo TM (2010) Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol Lett 311:140–146

    Google Scholar 

  • Laus MC, Logman TJ, Lamers GE, Van Brussel AA, Carlson RW, Kijne JW (2006) A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Mol Microbiol 59:1704–1713

    Article  CAS  PubMed  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 36:893–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marketon MM, Glenn SA, Eberhard A, Gonzalez JE (2003) Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185:325–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10:39–50

    CAS  Google Scholar 

  • Meneses CHSG, Rouws LFM, Simões-Araújo JL, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant Microbe Interac 24:1448–1458

    Article  CAS  Google Scholar 

  • Mongiardini EJ, Ausmees N, Pérez-Giménez J, Althabegoiti JM, Quelas JI, López-Garcia SL (2008) The rhizobial adhesion protein RapA1 is involved in adsorption of rhizobia to plant roots but not in nodulation. FEMS Microbiol Ecol 65:279–288

    Article  CAS  PubMed  Google Scholar 

  • Morris CE, Monier JM (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN, Gibbs BF (2004) Types, production and applications of biosurfactants. Proc Indian Natl Sci Acad 70:31–55

    CAS  Google Scholar 

  • Nievas F, Bogino P, Sorroche F, Giordano W (2012) Detection, characterization, and biological effect of quorum-sensing signaling molecules in peanut-nodulating bradyrhizobia. Sensors 12:2851–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Montaño F, Jiménez-Guerrero I, Del Cerro P, Baena-Ropero I, López-Baena FJ, Ollero FJ, Bellogín R, Lloret J, Espuny R (2014) The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of glycine max cv Osumi, is regulated by Quorum Sensing Systems and Inducing Flavonoids via NodD1. PLoS ONE 9:e105901. doi:10.1371/journal.pone.0105901

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrova OE, Sauer K (2012) Sticky situations: key components that control bacterial surface attachment. J Bacteriol 194:2413–2425

    Google Scholar 

  • Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7:602–609

    Article  CAS  PubMed  Google Scholar 

  • Rinaudi L, Giordano W (2010) An integrated view of biofilm formation in Rhizobia. FEMS Microbiol Letters 304:1–11

    Article  CAS  Google Scholar 

  • Robledo M, Jiménez-Zurdo JI, Soto MJ, Velázquez E, Dazzo F, Martínez-Molina E, Mateos PF (2011) Development of functional symbiotic White clover root hairs and nodules requires tightly regulated production of rhizobial cellulase CelC2. Mol Plant Microbe Interact 24:798–807

    Article  CAS  PubMed  Google Scholar 

  • Robledo M, Rivera L, Jiménez-Zurdo JI, Rivas R, Dazzo F, Velázquez E, Martínez-Molina E, Hirsch AM, Mateos PF (2012) Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb Cell Fact 11:125

    Article  CAS  PubMed  Google Scholar 

  • Rollet C, Gal L, Guzzo J (2009) Biofilm-detached cells, a transition from a sessile to a planktonic phenotype: a comparative study of adhesion and physiological characteristics in Pseudomonas aeruginosa. FEMS Microbiol Lett 290:135–142

    Article  CAS  PubMed  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and Fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440

    Article  CAS  PubMed  Google Scholar 

  • Römling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57:629–639

    Article  PubMed  Google Scholar 

  • Schuster JJ, Markx GH (2014) Biofilm architecture. Adv Biochem Eng Biotechnol 146:77–96

    PubMed  Google Scholar 

  • Seneviratne G, Weerasekara MLMAW, Seneviratne KACN, Zavahir JS, Kecskés ML, Kennedy IR (2011) Importance of biofilm formation in plant growth promoting rhizobacterial action. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, vol 18. Springer, Berlin, pp 81–95

    Chapter  Google Scholar 

  • Singh AK, Cameotra SS (2013) Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria. Appl Biochem Biotechnol 170:1038–1056

    Article  CAS  PubMed  Google Scholar 

  • Sorroche FG, Rinaudi LV, Zorreguieta A, Giordano W (2010) EPS II dependent auto aggregation of Sinorhizobium meliloti planktonic cells. Curr Microbiol 61:465–470

    Article  CAS  PubMed  Google Scholar 

  • Stanley NR, Lazazzera BA (2004) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924

    Article  CAS  PubMed  Google Scholar 

  • Sun LN, Zhang J, Chen Q, He J, Li QF, Li SP (2013) Comamonas jiangduensis sp. nov., a biosurfactant-producing bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 63:2168–2173

    Article  CAS  PubMed  Google Scholar 

  • Suthar H, Hingurao K, Desai A, Nerurkar A (2008) Evaluation of bioemulsifier mediated microbial enhanced oil recovery using sand pack column. J Microbiol Methods 75:225–230

    Article  CAS  PubMed  Google Scholar 

  • Sutherland IW (2001) The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227

    Article  CAS  PubMed  Google Scholar 

  • Tak HI, Ahmad F, Babalola O (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev Environ Contam Toxicol 223:33–52

    CAS  PubMed  Google Scholar 

  • Timmusk S, Nevo E (2011) Plant root associated biofilms: perspectives for natural product mining. In: Maheshwari DK (ed) Bacteria in Agrobiology: plant nutrient management. Springer, Berlin, pp 285–300

    Chapter  Google Scholar 

  • Tokumoto Y, Nomura N, Uchiyama H, Imura T, Morita T, Fukuoka T, Kitamoto D (2009) Structural characterization and surface-active properties of a succinoyl trehalose lipid produced by Rhodococcus sp. SD-74. J Oleo Sci 58:97–102

    Article  CAS  PubMed  Google Scholar 

  • Van Bogaert INA, Zhang JX, Soetaert W (2011) Microbial synthesis of sophorolipids. Process Biochem 46:821–833

    Article  Google Scholar 

  • Vanderlinde EM, Muszynski A, Harrison JJ, Koval SF, Foreman DL, Ceri H (2009) Rhizobium leguminosarum biovar viciae 3841, deficient in 27-hydroxyoctacosanoate-modified lipopolysaccharide, is impaired in desiccation tolerance, biofilm formation and motility. Microbiology 155:3055–3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner M, Ivleva NP, Haisch C, Niessner R, Horn H (2009) Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): investigations on EPS-matrix. Water Res 43:63–76

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Liu TM, Shen MH, Yang MQ, Feng QY, Tang XM, Li XM (2012) Spiculisporic acids B-D, three new γ-butenolide derivatives from a sea urchin-derived fungus Aspergillus sp. HDf2. Molecules 17:13175–13182

    Article  CAS  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  • Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:4585–4592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb JS, Lau M, Kjelleberg S (2004) Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol 186:8066–8073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Raza W, Huang Q, Shen Q (2011) Quantification of the antifungal lipopeptide iturin A by high performance liquid chromatography coupled with aqueous two phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 879:2746–2750

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review and studies by the authors’ group described herein were supported by grants from the Secretaría de Ciencia y Técnica (UNRC), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Consejo Nacional de Investigaciones Científicas y Técnicas of the República Argentina (CONICET). EDP and FR have a CONICET fellowship. WG is a Career Member of CONICET. The authors are grateful to Dr. S. Anderson for English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Giordano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Primo, E.D., Ruiz, F., Masciarelli, O., Giordano, W. (2015). Biofilm Formation and Biosurfactant Activity in Plant-Associated Bacteria. In: Maheshwari, D. (eds) Bacterial Metabolites in Sustainable Agroecosystem. Sustainable Development and Biodiversity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-24654-3_13

Download citation

Publish with us

Policies and ethics