Skip to main content

Techniques to Study Microbial Phytohormones

  • Chapter
  • First Online:
Bacterial Metabolites in Sustainable Agroecosystem

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 12))

Abstract

Soil is replete with microscopic life such as bacteria, fungi, actinomycetes, protozoa and algae. Microscopic life tends to reside in the rhizosphere of the soil and interact with plants. A microbial–plant interaction occurs due to the microbial ability to produce phytohormones regarded as the “classical five,” which are auxin, gibberellin, cytokinins, ethylene and abscisic acid. In addition to these modulators, jasmonic and salicylic acid are also documented as bacterial hormones contributing to a sustainable agro system. Auxins, gibberellins and cytokinins are known to be produced by Azospirillum species. Auxin production in fungus such as Pistolithus tinctorius leads to promotion of plant growth and different bacterial species show effect on root length by increasing the surface area and induction of gall and tumor formations. Gibberellins are tetracyclic diterpenoid acids that are involved in a number of developmental, reproduction and floral formation in plants, while plant growth promotion and induction of tumor and gall formation are done by cytokinins. Pseudomonas solanacearum, Mycobacterium hiemalis and largely spore forming bacteria have shown to form ethylene in culture. Abscisic acid (ABA) is a stress-related signaling molecule reported in all kingdoms of life such as plant-associated bacteria, plant pathogenic fungi, certain cyanobacteria, algae, lichens, protozoa and sponges. Salicylic acid is synthesized by the fungus P. patulum and it is an effective therapeutic agent for plants. SA plays a role in plant response during biotic and abiotic stress. It also regulates physiological and biochemical processes during the plant lifespan. Jasmonic acid is a signaling molecule involved in plant defense reported to be produced by fungus Lasiodiplodia theobromae. However, despite the significant research pursued in this area, there are limited reports suggesting strategies that focus on the production, extraction and detection of microbial phytohormones. Here, the present review focuses on the techniques used for isolation and purification of these phytohormones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta IF, Farmer EE (2010) Jasmonates. The Arabidopsis book/American Society of Plant Biologists 8:e0129. doi:10.1199/tab.0129

    PubMed Central  Google Scholar 

  • Atzorn R, Crozier A, Wheeler CT, Sandberg G (1988) Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175(4):532–538

    Google Scholar 

  • Badenoch Jones J, Summons RE, Djordjevic MA, Shine J, Letham DS, Rolfe BG (1982) Mass spectrometric quantification of indole-3-acetic acid in Rhizobium culture supernatants: relation to root hair curling and nodule initiation. Appl Environ Microb 44(2):275–280

    Google Scholar 

  • Bartz J, Söll D, Burrows WJ, Skoog F (1970) Identification of the cytokinin-active ribonucleosides in pure Escherichia coli tRNA species. Proc Natl Acad Sci 67(3):1448–1453

    Google Scholar 

  • Bhalla K, Singh SB, Agarwal R (2010) Quantitative determination of gibberellins by high performance liquid chromatography from various gibberellins producing Fusarium strains. Environ Monit Assess 167(1–4):515–520

    Google Scholar 

  • Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microb 57(2):535–538

    Google Scholar 

  • Cleland CF, Zeevaart JA (1970) Gibberellins in relation to flowering and stem elongation in the long day plant Silene armeria. Plant Physiol 46(3):392–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comai LUCA, Kosuge TSUNE (1980) Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. J Bacteriol 143(2):950–957

    Google Scholar 

  • Comai LUCA, Kosuge TSUNE (1982) Cloning characterization of iaaM, a virulence determinant of Pseudomonas savastanoi. J Bacteriol 149(1):40–46

    Google Scholar 

  • Coppola S, Giannattasio M (1968) Cytokinin activity in a rhizospheric actinomyces. J Biol Res 44(22):1913–1915

    Google Scholar 

  • Crafts CB, Miller CO (1974) Detection and identification of cytokinins produced by mycorrhizal fungi. Plant Physiol 54(4):586–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crozier A, Loferski K, Zaerr JB, Morris RO (1980) Analysis of picogram quantities of indole-3-acetic acid by high performance liquid chromatography-fluorescence procedures. Planta 150(5):366–370

    Article  CAS  PubMed  Google Scholar 

  • Deepa CK, Dastager SG, Pandey A (2010) Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) Seedling growth. World J Microbiol Biotechnol 26(7):1233–1240

    Google Scholar 

  • Dekas AD, Poretsky RS, Orphan VJ (2009) Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326:422–426

    Article  CAS  PubMed  Google Scholar 

  • Demole E, Lederer E, Mercier D (1962) Isolation and determination of methyl jasmonate structure, forming characteristic fragrant jasmine essence. Helv Chim Acta 45(2):675–685

    Article  CAS  Google Scholar 

  • Dhandhukia PC, Thakkar VR (2007) Standardization of growth and fermentation criteria of Lasiodiplodia theobromae for production of jasmonic acid. Afr J Biotechnol 6(6):707–712

    CAS  Google Scholar 

  • Dhandhukia PC, Thakkar VR (2008) Response surface methodology to optimize the nutritional parameters for enhanced production of jasmonic acid by Lasiodiplodia theobromae. J Appl Microbiol 105(3):636–643

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149

    Google Scholar 

  • Dobert RC, Rood SB, Blevins DG (1992) Gibberellins and the legume-Rhizobium symbiosis I. endogenous gibberellins of lima bean (Phaseolus lunatus L.) stems and nodules. Plant Physiol 98(1):221–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos AZ, de Mello Innocentini MD, Lourenço MV (2014) Optimization of jasmonates bioproduction, 4th edn. In: BMC Proceedings, vol 8, p 208. doi:10.1186/1753-6561-8-S4-P208

  • Doumas P, Bonnet-Masimbert M, Zaerr JB (1989) Evidence of cytokinin bases, ribosides and glucosides in roots of Douglas-fir, Pseudotsuga menziesii. Tree Physiol 5(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Edlund A, Eklof S, Sundberg B, Moritz T, Sandberg G (1995) A microscale technique for gas chromatography-mass spectrometry measurements of picogram amounts of indole-3-acetic acid in plant tissues. Plant Physiol 108(3):1043–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Khawas H, Adachi K (1999) Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biol Fertil Soils 28(4):377–381

    Google Scholar 

  • Elad Y (1993) Regulators of ethylene biosynthesis or activity as a tool for reducing susceptibility of host plant tissues to infection by Botrytis cinerea. Neth J Plant Pathol 99(3):105–113

    Article  CAS  Google Scholar 

  • Elmerich C, Newton WE (2007) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer

    Google Scholar 

  • Entsch B, Letham DS, Parker CW, Summons RE, Gollnow BI (1980) Metabolites of cytokinins. In: Skoog F (ed) Plant growth substances 1979. Springer, Berlin Heidelberg, pp 109–118

    Chapter  Google Scholar 

  • Fallik E, Okon Y, Epstein E, Goldman A, Fischer M (1989) Identification and quantification of IAA and IBA in Azospirillum brasilense-inoculated maize roots. Soil Biol Biochem 21(1):147–153

    Google Scholar 

  • Fernández-Martín R, Reyes F, Domenech CE, Cabrera E, Bramley PM, Barrero AF, Avalos J, Cerdá-Olmedo E (1995) Gibberellin biosynthesis in gib mutants of Gibberella fujikuroi. J Biol Chem 270:14970–14974

    Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): Isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76(5):1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Frankenberger WT, Poth M (1987) Biosynthesis of indole-3-acetic acid by the pine ectomycorrhizal fungus Pisolithus tinctorius. Appl Environ Microb 53(12):2908–2913

    Google Scholar 

  • Frankenberger WT Jr, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker Inc., New York, USA

    Google Scholar 

  • Fulchieri M, Lucangeli C, Bottini R (1993) Inoculation with Azospirillum lipoferum affects growth and gibberellin status of corn seedling roots. Plant Cell Physiol 34:1305–1309

    Google Scholar 

  • Ge L, Yong JWH, Goh NK, Chia LS, Tan SN, Ong ES (2005) Identification of kinetin and kinetin riboside in coconut (Cocos nucifera L.) water using a combined approach of liquid chromatography–tandem mass spectrometry, high performance liquid chromatography and capillary electrophoresis. J Chromatogr 829(1):26–34

    CAS  Google Scholar 

  • Ge L, Yong JW H, Tan SN, Yang XH, Ong ES (2006) Analysis of cytokinin nucleotides in coconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandem mass spectrometry after solid-phase extraction. J Chrom A 1133(1):322–331

    Google Scholar 

  • Glass NL, Kosuge T (1986) Cloning of the gene for indoleacetic acid-lysine synthetase from Pseudomonas syringae subsp. savastanoi. J Bacteriol 166(2):598–603

    Google Scholar 

  • Glauser G, Boccard J, Rudaz S, Wolfender JL (2010) Mass spectrometry-based metabolomics oriented by correlation analysis for wound-induced molecule discovery: identification of a novel jasmonate glucoside. Phytochem Anal 21(1):95–101

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. doi:10.6064/2012/963401

    Article  PubMed  PubMed Central  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61(2):793–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami D, Pithwa S, Dhandhukia P, Thakker JN (2014) Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert. J Plant Interact 9(1):566–576

    Article  CAS  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2015) Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC. J Microbiol Meth 110:7–14. doi:10.1016/j.mimet.2015.01.001

  • Goswami D, Vaghela H, Parmar S, Dhandhukia P, Thakker JN (2013) Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. J Plant Interact 8(4):281–290

    Google Scholar 

  • Greene EM (1980) Cytokinin production by microorganisms. Bot Rev 46(1):25–74

    Article  CAS  Google Scholar 

  • Griffiths PR, De Haseth JA (2007) Fourier transform infrared spectrometry, vol 171. Wiley, Hoboken

    Google Scholar 

  • Gutiérrez‐Mañero FJ, Ramos‐Solano B, Probanza A, Mehouachi J, R Tadeo F, Talon M (2001) The plant‐growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plantarum 111(2):206–211

    Google Scholar 

  • Harari A, Kigel J, Okon Y (1988) Involvement of IAA in the interaction between Azospirillum brasilense and Panicum miliaceum roots. Plant Soil 110(2):275–282

    Article  CAS  Google Scholar 

  • Hauserová E, Swaczynová J, Doležal K, Lenobel R, Popa I, Hajdúch M, Strnad M (2005) Batch immunoextraction method for efficient purification of aromatic cytokinins. J Chrom A 1100(1):116–125

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • Hecht SM (1980) Probing the cytokinin receptor site (s). In: Skoog F (ed) Plant growth substances. Springer, Berlin Heidelberg, pp 144–158

    Google Scholar 

  • Heftmann E, Saunders GA, Haddon WF (1978) Argentation high-pressure liquid chromatography and mass spectrometry of gibberelline esters. J Chrom A 156(1):71–77

    Google Scholar 

  • Hillel D (2003) Introduction to environmental soil physics. Elsevier Science, USA

    Google Scholar 

  • Hiroya K, Itoh S, Sakamoto T (2004) Development of an efficient procedure for indole ring synthesis from 2-ethynylaniline derivatives catalyzed by Cu (II) salts and its application to natural product synthesis. J Org Chem 69(4):1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Hradecká V, Novák O, Havlíček L, Strnad M (2007) Immunoaffinity chromatography of abscisic acid combined with electrospray liquid chromatography–mass spectrometry. J Chrom B 847(2):162–173

    Article  Google Scholar 

  • Hyodo H (1991) Stress/wound ethylene. In: Mattoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press, USA, pp 151–189

    Google Scholar 

  • Isenberg HD, Sundheim LH (1958) Indole reactions in bacteria. J Bacteriol 75(6):682–690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jameson PE (2000) Cytokinins and auxins in plant-pathogen interactions–An overview. Plant Growth Regul 32(2–3):369–380. doi:10.1023/A:1010733617543

  • Janzen RA, Rood SB, Dormaar JF, McGill WB (1992) Azospirillum brasilense produces gibberellin in pure culture on chemically-defined medium and in co-culture on straw. Soil Biol Biochem 24:1061–1064

    Article  CAS  Google Scholar 

  • Jiang TF, Lv ZH, Wang YH, Yue ME (2006) Separation of plant hormones from biofertilizer by capillary electrophoresis using a capillary coated dynamically with polycationic polymers. Anal Sci 22(6):811–814

    Article  CAS  PubMed  Google Scholar 

  • Kamboj JS, Blake PS, Baker DA (1998) Cytokinins in the vascular saps of Ricinus communis. Plant Growth Regul 25(2):123–126

    Article  CAS  Google Scholar 

  • Kamnev AA, Shchelochkov AG, Perfiliev YD, Tarantilis PA, Polissiou MG (2001) Spectroscopic investigation of indole-3-acetic acid interaction with iron (III). J Mol Struct 563:565–572

    Article  Google Scholar 

  • Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, Lee IJ (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31(2):277–281

    Article  CAS  PubMed  Google Scholar 

  • Kannangara T, Wieczorek A, Lavender DP (1989) Immunoaffinity columns for isolation of abscisic acid in conifer seedlings. Physiol Plant 75(3):369–373

    Article  CAS  Google Scholar 

  • Kapulnik Y, Okon Y, Henis Y (1985) Changes in root morphology of wheat caused by Azospirillum inoculation. Can J Microbiol 31(10):881–887

    Article  Google Scholar 

  • Karakoç Ş, Aksöz N (2006) Some optimal cultural parameters for gibberellic acid biosynthesis by Pseudomonas sp. Turkish J Biol 30(2):81–85

    Google Scholar 

  • Katznelson H, Cole SE (1965) Production of gibberellin-like substances by bacteria and actinomycetes. Can J Microbiol 11:733–741

    Google Scholar 

  • Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) FZB24® Bacillus subtilis–mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachr Bayer 1(00):72–93

    Google Scholar 

  • Kim J, Chun MS, Choi K, Chung DS (2009) Large volume stacking using an EOF pump in NACE-MS. Electrophoresis 30(6):1046–1051

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa E (1926) Experimental studies on the nature of the substance secreted by the “bakanae” fungus. Nat Hist Soc Formosa 16:213–227

    Google Scholar 

  • Leite V, Santos A, Innocentini M, Maciel G, Lourenço M (2014) Influence of linolenic acid in the production of jasmonate. BMC Proc 8(4):178

    Article  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Biol 50(1):47–65

    Article  CAS  Google Scholar 

  • Lichter A, Barash I, Valinsky L, Manulis S (1995) The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: Characterization and role in gall formation. J Bacteriol 177(15):4457–4465

    Google Scholar 

  • Liu ST, Perry KL, Schardl CL, Kado CI (1982) Agrobacterium Ti plasmid indole acetic acid gene is required for crown gall oncogenesis. Proc Natl Acad Sci U.S.A. 79:2812–2816

    Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28(4):465–474

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Wang T (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15. doi:10.1016/j.envint.2014.12.010

  • Lugtenberg BJ, Malfanova N, Kamilova F, Berg G (2013) Microbial control of plant root diseases. In: Bruijn (ed) Molecular Microbial Ecology of the Rhizosphere, vol 2. Wiley, pp 575–586

    Google Scholar 

  • Lwin KM, Myint MM, Tar T, Aung WZM (2012) Isolation of plant hormone (Indole-3-Acetic Acid-IAA) producing rhizobacteria and study on their effects on maize seedling. Eng J 16(5):137–144

    Article  Google Scholar 

  • Ma Z, Ge L, Lee AS, Yong JWH, Tan SN, Ong ES (2008) Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography–tandem mass spectrometry after solid-phase extraction. Anal Chim Acta 610(2):274–281

    Article  CAS  PubMed  Google Scholar 

  • Mac Faddin JF (1976) Biochemical tests for identification of medical bacteria. 88(4):1080–1091.doi:10.1172/JCI115407

  • MacMillan J (2001) Occurrence of gibberellins in vascular plants, fungi and bacteria. J Plant Growth Regul 20(4):387–442

    Article  CAS  PubMed  Google Scholar 

  • Manual D (1998) Detroit. MI: Difco Laboratories

    Google Scholar 

  • Manulis S, Haviv-Chesner A, Brandl MT, Lindow SE, Barash I (1998) Differential involvement of indole-3-acetic acid biosynthetic a pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol Plant Microbe Interact 11:634–642

    Google Scholar 

  • Maruyama A, Maeda M, Simidu U (1986) Occurrence of plant hormone (cytokinin)-producing bacteria in the sea. J Appl Bacteriol 61(6):569–574

    Article  CAS  Google Scholar 

  • Mascarua-Esparza MA, Villa-Gonzalez R, Caballero-Mellado J (1988) Acetylene reduction and indoleacetic acid production by Azospirillum isolates from Cactaceous plants. Plant Soil 106:91–95

    Article  CAS  Google Scholar 

  • Miersch O, Schneider G, Sembdner G (1991) Hydroxylated jasmonic acid and related compounds from Botryodiplodia theobromae. Phytochem 30(12):4049–4051

    Google Scholar 

  • Miller JM, Wright JW (1982) Spot indole test: evaluation of four reagents. J Clin Microbiol 15(4):589–592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13(3):638–649

    Google Scholar 

  • Moller SG, Chua NH (1999) Interactions and intersections of plant signalling pathways. J Mol Biol 293:219–234

    Article  CAS  PubMed  Google Scholar 

  • Moore TC (1979) Auxins. In: Biochemistry and Physiology of plant hormones, Springer US. 32–89. doi:10.1007/978-1-4684-0079-3_2

  • Morris RO, Zaerr JB (1978) 4-Bromophenacyl Esters of Gibberellins, Useful Derivatives for High Performance Liquid Chromatography. Anal lett 11(1):73–83

    Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotech Adv 32(2):429–448

    Article  Google Scholar 

  • Nicander B, Ståhl U, Björkman PO, Tillberg E (1993) Immunoaffinity co-purification of cytokinins and analysis by high-performance liquid chromatography with ultraviolet-spectrum detection. Planta 189(3):312–320

    Article  CAS  PubMed  Google Scholar 

  • Novák O, Tarkowski P, Tarkowská D, Doležal K, Lenobel R, Strnad M (2003) Quantitative analysis of cytokinins in plants by liquid chromatography–single-quadrupole mass spectrometry. Anal Chim Acta 480(2):207–218

    Article  Google Scholar 

  • Nuray ERG (2002) Auxin (indole-3-acetic acid), gibberellic acid (GA3), abscisic acid (ABA) and cytokinin (zeatin) production by some species of mosses and lichens. Turk J Bot 26(1):13–18

    Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15(7):1591–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omay SH, Schmidt WA, Martin P, Bangerth F (1993) Indoleacetic acid production by the rhizosphere bacterium Azospirillum brasilense Cd under in vitro conditions. Can J Microbiol 39:187–192

    Google Scholar 

  • Pacáková V, Štulı́k K, Vlasáková V, Březinová A (1997) Capillary electrophoresis of cytokinins and cytokinin ribosides. J Chrom A 764(2):331–335

    Article  Google Scholar 

  • Pandya ND, Desai PV (2014) Screening and characterization of GA3 producing Pseudomonas monteilii and its impact on plant growth promotion. Int J Curr Microbiol App Sci 3(5):110–115

    CAS  Google Scholar 

  • Patel PP, Rakhashiya PM, Chudasama KS, Thaker VS (2012) Isolation, purification and estimation of zeatin from Corynebacterium aurimucosum. Eur J Exp Biol 2(1):1–8

    Google Scholar 

  • Patil V (2011) Production of indole acetic acid by Azotobacter sp. Recent Res Sci Technol 3(12)

    Google Scholar 

  • Playtis AJ, Leonard NJ (1971) The synthesis of ribosyl-cis-zeatin and thin layer chromatographic separation of the cis and trans isomers of ribosylzeatin. Biochem Biophys Res Commun 45(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Prinsen E, Van Dongen W, Esmans EL, Van Onckelen HA (1997) HPLC linked electrospray tandem mass spectrometry: a rapid and reliable method to analyse indole-3-acetic acid metabolism in bacteria. J Mass Spectrom 32(1):12–22

    Article  CAS  Google Scholar 

  • Prinsen E, Van Dongen W, Esmans EL, Van Onckelen HA (1998) Micro and capillary liquid chromatography–tandem mass spectrometry: a new dimension in phytohormone research. J Chrom A 826(1):25–37

    Article  CAS  Google Scholar 

  • Rademacher W (1994) Gibberellin formation in microorganisms. Plant Growth Regul 15(3):303–314

    Article  CAS  Google Scholar 

  • Rangaswamy V (2012) Improved production of gibberellic acid by Fusarium moniliforme. J Microbiol Res 2(3):51–55

    Article  Google Scholar 

  • Redig P, Shaul O, Inzé D, Van Montagu M, Van Onckelen H (1996) Levels of endogenous cytokinins, indole-3-acetic acid and abscisic acid during the cell cycle of synchronized tobacco BY-2 cells. FEBS Lett 391(1):175–180

    Article  CAS  PubMed  Google Scholar 

  • Reynders L, Vlassak K (1979) Conversion of tryptophan to indole acetic acid by Azospirillum brasilense. Soil Biol Biochem 11:547–548

    Article  CAS  Google Scholar 

  • Roberto F, Kosuge T (1987) Phytohormone metabolism in Pseudomonas syringae subsp. savastanoi. In: J E Fox, M Jacob (Eds.), Molecular biology of plant growth control, New York: Alan R Liss, Inc. pp 371–380

    Google Scholar 

  • Rogers SW, Rogers JC (1999) Cloning and characterization of a gibberellin-induced RNase expressed in barley aleurone cells. Plant Physiol 119(4):1457–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas MC, Hedden P, Gaskin P, Tudzynski B (2001) The P450-1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis. Proc Natl Acad Sci U.S.A. 98:5838–5843

    Google Scholar 

  • Rowell DL (2014) Soil science: methods & applications. Taylor & Francis, Routledge

    Google Scholar 

  • Sanchez-Marroquin A (1963) Microbiological production of gibberellic acid in glucose media. J Appl Microbiol 11(6):523–528

    CAS  Google Scholar 

  • Sandberg G, Crozier A (1986) Purification of indole-3-acetic acid in plant extracts by immunoaffinity chromatography. Phytochem 25(2):295–298

    Article  Google Scholar 

  • Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nature Chem Biol 5:301–307

    Article  CAS  Google Scholar 

  • Schmitt J, Flemming HC (1998) FTIR-spectroscopy in microbial and material analysis. Int Biodeter Biodegr 41(1):1–11

    Article  CAS  Google Scholar 

  • Schneider EA, Kazakoff CW, Wightman F (1985) Gas chromatography-mass spectrometry evidence for several endogenous auxins in pea seedling organs. Planta 165(2):232–241

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Iyer JP, Chakraborti AK, Banerjee UC (2004) Determination of gibberellins in fermentation broth produced by Fusarium verticilliodes MTCC 156 by high-performance liquid chromatography tandem mass spectrometry. Biotechnol Appl Biochem 39(1):83–88

    Article  CAS  PubMed  Google Scholar 

  • Sponsel VM (2001) The deoxyxylulose phosphate pathway for the biosynthesis of plastidic isoprenoids: early days in our understanding of the early stages of gibberellin biosynthesis. J Plant Growth Regul 20(4):332–345

    Article  CAS  PubMed  Google Scholar 

  • Sprinzl M, Vassilenko KS (2005) Compilation of tRNA sequences and sequences of tRNA genes. Nuc Acids Res 33(1):139–140

    Google Scholar 

  • Srivastava AC, Ahamad S, Agarwal DK, Sarbhoy AK (2003) Screening of potential gibberellin producing Fusarium strains for the hybrid rice production. J Food Agric Environ 1:250–253

    CAS  Google Scholar 

  • Sturtevant D, Taller B (1989) Cytokinin production by a parasponia nodule bacterium. Abstr Annu Meet Am Soc Microbiol 89:300

    Google Scholar 

  • Suge H, Rappaport L (1968) Role of gibberellins in stem elongation and flowering in radish. Plant Physiol 43(8):1208–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun TP, Kamiya Y (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell Online 6(10):1509–1518

    Article  CAS  Google Scholar 

  • Swain MR, Naskar SK, Ray RC (2007) Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Pol J Microbiol 56(2):103–110

    CAS  PubMed  Google Scholar 

  • Szkop M, Bielawski W (2013) A simple method for simultaneous RP-HPLC determination of indolic compounds related to bacterial biosynthesis of indole-3-acetic acid. Antonie van Leeuwenhoek 103(3):683–691

    Google Scholar 

  • Takahashi N (1986) Chemistry of plant hormones. CRC Press, Boca Raton

    Google Scholar 

  • Tarkowski P, Ge L, Yong JWH, Tan SN (2009) Analytical methods for cytokinins. TrAC Trend Anal Chem 28(3):323–335

    Google Scholar 

  • Thimann KV, Sachs T (1966) The role of cytokinins in the “fasciation” disease caused by Corynebacterium fascians. Am J Bot 53(7):731–739

    Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37(5):1016–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31(13):1847–1852

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42(2):117–126

    Article  CAS  Google Scholar 

  • Tsukada K, Takahashi K, Nabeta K (2010) Biosynthesis of jasmonic acid in a plant pathogenic fungus, Lasiodiplodia theobromae. Phytochemistry 71(17):2019–2023

    Article  CAS  PubMed  Google Scholar 

  • Ueda J, Miyamoto K, Kamisaka S (1994) Separation of a new type of plant growth regulator, jasmonates, by chromatographic procedures. J Chrom A 658(1):129–142

    Google Scholar 

  • Ulvskov P, Marcussen J, Seiden P, Olsen CE (1992) Immuno affinity purification using monoclonal antibodies for the isolation of indole auxins from elongation zones of epicotyls of red-light-grown Alaska peas. Planta 188(2):182–189

    Article  CAS  PubMed  Google Scholar 

  • Unyayar S, Topcuoglu SF, Unyayar A (1996) A modified method for extraction and identification of Indole-3-Acetic Acid (IAA), Gibberellic Acid (GA3), Abscisic Acid (ABA) and zeatin produced by Phanerochaete chrysosporium ME446. Bulg J Plant Physiol 22(3–4):105–110

    CAS  Google Scholar 

  • Uthandi S, Karthikeyan S, Sabarinathan KG (2010) Gibberellic acid production by Fusarium fujikuroi SG2. JSIR 69(3):211–214

    CAS  Google Scholar 

  • Vikram A, Hamzehzarghani H, Alagawadi AR, Krishnaraj PU, Chandrashekar BS (2007) Production of plant growth promoting substances by phosphate solubilizing bacteria isolated from Vertisols. J Plant Sci 2(3):326–333

    Article  CAS  Google Scholar 

  • Wasternack C, Kombrink E (2009) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. 5(1):63–77. doi:10.1021/cb900269u

  • Weber H, Vick BA, Farmer EE (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci 94(19):10473–10478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiler EW (1981) Radioimmunoassay for pmol-quantities of indole-3-acetic acid for use with highly stable [125I]-and [3H] IAA derivatives as radiotracers. Planta 153(4):319–325

    Article  CAS  PubMed  Google Scholar 

  • West CA (1960) Gibberellins as native plant growth regulators. Annu Rev Plant Phys 11(1):411–436

    Article  Google Scholar 

  • Wightman F, Lighty DL (1982) Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiol Plant 55(1):17–24

    Google Scholar 

  • Yalpani N, Altier DJ, Barbour E, Cigan AL, Scelonge CJ (2001) Production of 6-methylsalicylic acid by expression of a fungal polyketide synthase activates disease resistance in tobacco. Plant Cell 13(6):1401–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yürekli F, Yesilada O, Yürekli M, Topcuoglu SF (1999) Plant growth hormone production from olive oil mill and alcohol factory waste waters by white rot fungi. World J Microb Biot 15(4):503–505

    Article  Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT (2003) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    Article  Google Scholar 

  • Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CM (2013) Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol 162(1):304–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Schwarz S, Saedler H, Huijser P (2007) SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Mol Biol 63(3):429–439

    Article  CAS  PubMed  Google Scholar 

  • Zimmer W, Roeben K, Bothe H (1988) An alternative explanation for plant growth promotion by bacteria of the genus Azospirillum. Planta 176(3):333–342

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janki Thakker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patel, K., Goswami, D., Dhandhukia, P., Thakker, J. (2015). Techniques to Study Microbial Phytohormones. In: Maheshwari, D. (eds) Bacterial Metabolites in Sustainable Agroecosystem. Sustainable Development and Biodiversity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-24654-3_1

Download citation

Publish with us

Policies and ethics