Skip to main content

Skyrmions and Electric Fields in Insulating Materials

  • Chapter
  • First Online:
Skyrmions in Magnetic Materials

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 2130 Accesses

Abstract

In insulating materials, conduction electrons and associated emergent fields are absent; instead, magnetic skyrmions in insulators induce spatially inhomogeneous charge distributions through the relativistic spin-orbit interaction. Depending on the symmetry of an underlying crystallographic lattice, skyrmions carry electric dipoles or quadrupoles and can be manipulated by an external electric field. This property may provide an energetically more efficient method to control skyrmions because the electric field in an insulating system causes only negligible Joule heat loss compared with the current-driven approach in a metallic system. In this chapter, this magnetoelectric nature of skyrmions is discussed. Skyrmions also show resonant oscillation against both ac magnetic and electric fields of gigahertz frequency. The interference of these excitations causes unique optical responses called directional dichroism, where the sign reversal of light (microwave) propagation direction gives different absorption spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Curie, J. Phys. 3, 393 (1894)

    Google Scholar 

  2. M. Fiebig, J. Phys. D Appl. Phys. 38, R123 (2005)

    Article  ADS  Google Scholar 

  3. Y. Tokura, S. Seki, N. Nagaosa, Rep. Prog. Phys. 77, 076501 (2014)

    Article  ADS  Google Scholar 

  4. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)

    Article  ADS  Google Scholar 

  5. M. Kenzelmann, A.B. Harris, S. Jonas, C. Broholm, J. Schefer, S.B. Kim, C.L. Zhang, S.-W. Cheong, O.P. Vajk, J.W. Lynn, Phys. Rev. Lett. 95, 087206 (2005)

    Article  ADS  Google Scholar 

  6. H. Katsura, N. Nagaosa, A.V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005)

    Article  ADS  Google Scholar 

  7. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006)

    Article  ADS  Google Scholar 

  8. N. Abe, K. Taniguchi, S.Ohtani, T. Takenobu, Y. Iwasa, T. Arima, Phys. Rev. Lett. 99, 227206 (2007)

    Google Scholar 

  9. Y. Tokunaga, Y. Taguchi, T. Arima, Y. Tokura, Nat. Phys. 8, 838 (2012)

    Article  Google Scholar 

  10. J.G. Bos, C.V. Colin, T.T.M. Palstra, Phys. Rev. B 78, 094416 (2008)

    Article  ADS  Google Scholar 

  11. S. Seki, X.Z. Yu, S. Ishiwata, Y. Tokura, Science 336, 198 (2012)

    Article  ADS  Google Scholar 

  12. S. Seki, S. Ishiwata, Y. Tokura, Phys. Rev. B 86, 060403(R) (2012)

    Google Scholar 

  13. C. Jia, S. Onoda, N. Nagaosa, J.H. Han, Phys. Rev. B 74, 224444 (2006)

    Article  ADS  Google Scholar 

  14. C. Jia, S. Onoda, N. Nagaosa, J.H. Han, Phys. Rev. B 76, 144424 (2007)

    Article  ADS  Google Scholar 

  15. J.H. Yang, Z.L. Li, X.Z. Lu, M.-H. Whangbo, S.-H. Wei, X.G. Gong, H.J. Xiang, Phys. Rev. Lett. 109, 107203 (2012)

    Article  ADS  Google Scholar 

  16. J.S. White, I. Levatić, A.A. Omrani, N. Egetenmeyer, K. Prsa, I. Zivkovic, J.L. Gavilano, J. Kohlbrecher, M. Bartkowiak, H. Berger, H.M. Ronnow, J. Phys. Condens. Matter 24, 432201 (2012)

    Article  ADS  Google Scholar 

  17. J.S. White, P. Prsa, P. Huang, A.A. Omrani, I. Zivkovic, M. Bartkowiak, H. Berger, A. Magrez, J.L. Gavilano, G. Nagy, J. Zang, H.M. Ronnow, Phys. Rev. Lett. 113, 107203 (2014)

    Article  ADS  Google Scholar 

  18. M. Mochizuki, Phys. Rev. Lett. 108, 017601 (2012)

    Article  ADS  Google Scholar 

  19. O. Petrova, O. Tchernyshyov, Phys. Rev. B 84, 214433 (2011)

    Article  ADS  Google Scholar 

  20. Y. Onose, Y. Okamura, S. Seki, S. Ishiwata, Y. Tokura, Phys. Rev. Lett. 109, 037603 (2012)

    Article  ADS  Google Scholar 

  21. T. Schwarze, J. Waizner, M. Garst, A. Bauer, I. Stasinopoulos, H. Berger, C. Pfleiderer, D. Grundler, Nat. Mater. 14, 478 (2015)

    Article  ADS  Google Scholar 

  22. A. Pimenov, A.A. Mukhin, V.Y. Ivanov, V.D. Travkin, A.M. Balbashov, A. Loidl, Nat. Phys. 2, 97 (2006)

    Article  Google Scholar 

  23. Y. Takahashi, R. Shimano, Y. Kaneko, H. Murakawa, Y. Tokura, Nat. Phys. 8, 121 (2011)

    Article  Google Scholar 

  24. G.L.J.A. Rikken, C. Strohm, P. Wyder, Phys. Rev. Lett. 89, 133005 (2002)

    Article  ADS  Google Scholar 

  25. J.H. Jung, M. Matsubara, T. Arima, J.P. He, Y. Kaneko, Y. Tokura, Phys. Rev. Lett. 93, 037403 (2004)

    Article  ADS  Google Scholar 

  26. M. Mochizuki, S. Seki, Phys. Rev. B 87, 134403 (2013)

    Article  ADS  Google Scholar 

  27. Y. Okamura, F. Kagawa, M. Mochizuki, M. Kubota, S. Seki, S. Ishiwata, M. Kawasaki, Y. Onose, Y. Tokura, Nat. Comm. 4, 2391 (2013)

    Article  ADS  Google Scholar 

  28. N. Ogawa, S. Seki, Y. Tokura, Sci. Rep. 5, 9552 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seki, S., Mochizuki, M. (2016). Skyrmions and Electric Fields in Insulating Materials. In: Skyrmions in Magnetic Materials. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-24651-2_4

Download citation

Publish with us

Policies and ethics