Skip to main content

Application of Large-Scale Phase-Field Simulations in the Context of High-Performance Computing

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ’15

Abstract

In material science, simulations became a common tool for the understanding of the underlying behaviour of different classes of materials. Due to the growing complexity of problems at hand, the simulation domains, and therefore the computational effort is steadily increasing. We presents various application of the phase-field method; ranging from the solidification of ternary eutectics and pure ice systems to the interaction of multiple liquid phases on fibers. All these topics have in common, that they need a large number of cores to investigate the decisive physical effects in adequate time. We show an overview of the results for this wide range of applications and the scaling behaviour of the used software frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben Said, M., Selzer, M., Nestler, B., Braun, D., Greiner, C., Garcke, H.: A phase-field approach for wetting phenomena of multiphase droplets on solid surfaces. Langmuir 30(14), 4033–4039 (2014)

    Article  Google Scholar 

  2. Berghoff, M., Nestler, B.: Scale-bridging phase-field simulations of microstructure responses on nucleation in metals and colloids. Eur. Phys. J. Spec. Top. 223(3), 409–419 (2014)

    Article  Google Scholar 

  3. Brakke, K.A.: The surface evolver. Exp. Math. 1(2), 141–165 (1992)

    Article  MathSciNet  Google Scholar 

  4. Carroll, B.J.: The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems. J. Colloid Interf. Sci. 57(3), 488–495 (1976)

    Article  Google Scholar 

  5. Carroll, B.J.: Equilibrium conformations of liquid drops on thin cylinders under forces of capillarity. A theory for the roll-up process. Langmuir 2(2), 248–250 (1986)

    Google Scholar 

  6. Chou, T.H., Hong, S.J., Liang, Y.E., Tsao, H.K., Sheng, Y.J.: Equilibrium phase diagram of drop-on-fiber: coexistent states and gravity effect. Langmuir 27(7), 3685–3692 (2011)

    Article  Google Scholar 

  7. Choudhury, A.: Quantitative Phase-Field Model for Phase Transformations in Multi-component Alloys (Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut fuer Technologie). KIT Scientific Publishing, Karlsruhe (2013)

    Google Scholar 

  8. Ruiter, R.: Manipulation of Drops with Electrowetting: From Morphological Transitions to Microfluidics. Universiteit Twente (2014). doi:10.3990/1.9789036536394

    Article  Google Scholar 

  9. Dennstedt, A., Ratke, L.: Microstructures of directionally solidified Al-Ag-Cu ternary eutectics. Trans. Indian Inst. Metals 65(6), 777–782 (2012)

    Article  Google Scholar 

  10. Dennstedt, A., Ratke, L., Choudhury, A., Nestler, B.: New metallographic method for estimation of ordering and lattice parameter in ternary eutectic systems. Metallogr. Microstruct. Anal. 2(3), 140–147 (2013)

    Article  Google Scholar 

  11. Dufour, R., Dibao-Dina, A., Harnois, M., Tao, X., Dufour, C., Boukherroub, R., Senez, V., Thomy, V.: Electrowetting on functional fibers. Soft Matter 9, 492–497 (2013)

    Article  Google Scholar 

  12. Eral, H.B., de Ruiter, J., de Ruiter, R., Oh, J.M., Semprebon, C., Brinkmann, M., Mugele, F.: Drops on functional fibers: from barrels to clamshells and back. Soft Matter 7(11), 5138 (2011)

    Article  Google Scholar 

  13. Feichtinger, C., Habich, J., Köstler, H., Röde, U., Aoki, T.: Performance modeling and analysis of heterogeneous lattice Boltzmann simulations on CPU-GPU clusters. Parallel Comput. 46, 1–13 (2015)

    Article  MathSciNet  Google Scholar 

  14. Genau, A., Ratke, L.: Morphological characterization of the Al-Ag-Cu ternary eutectic. Int. J. Mater. Res. 103(4), 469–475 (2012)

    Article  Google Scholar 

  15. Gilet, T., Terwagne, D., Vandewalle, N.: Digital microfluidics on a wire. Appl. Phys. Lett. 95(1), 10–13 (2009)

    Article  Google Scholar 

  16. Gilet, T., Terwagne, D., Vandewalle, N.: Droplets sliding on fibres. Eur. Phys. J. E 31(3), 253–262 (2010)

    Article  Google Scholar 

  17. Godenschwager, C., Schornbaum, F., Bauer, M., Köstler, H., Rüde, U.: A framework for hybrid parallel flow simulations with a trillion cells in complex geometries. In: Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, p. 35. ACM (2013)

    Google Scholar 

  18. Handel, R., Davidchack, R.L., Anwar, J., Brukhno, A.: Direct calculation of solid-liquid interfacial free energy for molecular systems: TIP4P ice-water interface. Phys. Rev. Lett. 100(3), 036104-1–036104-4 (2008)

    Google Scholar 

  19. Hecht, U., Gránásy, L., Pusztai, T., Böttger, B., Apel, M., Witusiewicz, V., Ratke, L., De Wilde, J., Froyen, L., Camel, D., et al.: Multiphase solidification in multicomponent alloys. Mater. Sci. Eng. R. Rep. 46(1), 1–49 (2004)

    Article  Google Scholar 

  20. Hötzer, J., Jainta, M., Steinmetz, P., Dennstedt, A., Nestler, B.: Die Vielfalt der Musterbildung in Metallen. Horizonte 45 (2015)

    Google Scholar 

  21. Hötzer, J., Jainta, M., Steinmetz, P., Nestler, B., Dennstedt, A., Genau, A., Bauer, M., Köstler, H., Rüde, U.: Large scale phase-field simulations of directional ternary eutectic solidification. Acta Mater. 93, 194–204 (2015)

    Article  Google Scholar 

  22. Köstler, H., Feichtinger, C., Rüde, U., Aoki, T.: A geometric multigrid solver on Tsubame 2.0. In: Efficient Algorithms for Global Optimization Methods in Computer Vision, pp. 155–173. Springer, Berlin (2014)

    Chapter  Google Scholar 

  23. Lewis, D., Allen, S., Notis, M., Scotch, A.: Determination of the eutectic structure in the Ag-Cu-Sn system. J. Electron. Mater. 31(2), 161–167 (2002)

    Article  Google Scholar 

  24. Langer, J.S., Müller-Krumbhaar, J.: Stability effects in dendritic crystal growth. J. Cryst. Growth 42, 11–14 (1977)

    Article  Google Scholar 

  25. Lismont, M., Vandewalle, N., Joris, B., Dreesen, L.: Fiber based optofluidic biosensors. Appl. Phys. Lett. 105(13), 133701 (2014)

    Article  Google Scholar 

  26. Maruyama, M.: Relation between growth and melt shapes of ice crystals. J. Cryst. Growth 318(1), 36–39 (2011)

    Article  Google Scholar 

  27. McHale, G., Newton, M.I.: Global geometry and the equilibrium shapes of liquid drops on fibers. Colloids Surf. A Physicochem. Eng. Asp. 206(1–3), 79–86 (2002)

    Article  Google Scholar 

  28. McHale, G., Käb, N., Newton, M., Rowan, S.: Wetting of a high-energy fiber surface. J. Colloid Interf. Sci. 186(2), 453–461 (1997)

    Article  Google Scholar 

  29. McHale, G., Newton, M.I., Carroll, B.J.: The shape and stability of small liquid drops on fibers. Oil Gas Sci. Technol. 56(1), 47–54 (2001)

    Article  Google Scholar 

  30. Moelans, N., Blanpain, B., Wollants, P.: An introduction to phase-field modeling of microstructure evolution. Calphad 32(2), 268–294 (2008)

    Article  Google Scholar 

  31. Nestler, B., Danilov, D., Galenko, P.: Crystal growth of pure substances: phase-field simulations in comparison with analytical and experimental results. J. Comput. Phys. 207(1), 221–239 (2005)

    Article  MathSciNet  Google Scholar 

  32. Requena, G., Cloetens, P., Altendorfer, W., Poletti, C., Tolnai, D., Warchomicka, F., Degischer, H.P.: Sub-micrometer synchrotron tomography of multiphase metals using kirkpatrick-baez optics. Scr. Mater. 61(7), 760–763 (2009)

    Article  Google Scholar 

  33. Ruggiero, M.A., Rutter, J.W.: Origin of microstructure in the 332 K eutectic of the Bi-In-Sn system. Mater. Sci. Technol. 13(1), 5–11 (1997)

    Article  Google Scholar 

  34. Steinbach, I.: Phase-field model for microstructure evolution at the mesoscopic scale. Annu. Rev. Mater. Res. 43(1), 89–107 (2013)

    Article  Google Scholar 

  35. Vondrous, A., Selzer, M., Hötzer, J., Nestler, B.: Parallel computing for phase-field models. Int. J. High Perform. Comput. Appl. 28(1), 61–72 (2014)

    Article  Google Scholar 

  36. Weyer, F., Ben Said, M., Hötzer, J., Berghoff, M., Dreesen, L., Nestler, B., Vandewalle, N.: Compound droplets on fibers. Langmuir 31(28), 7799–7805 (2015)

    Article  Google Scholar 

  37. Wu, X.F., Dzenis, Y.A.: Droplet on a fiber: geometrical shape and contact angle. Acta Mech. 185(3–4), 215–225 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Hötzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hötzer, J., Jainta, M., Ben Said, M., Steinmetz, P., Berghoff, M., Nestler, B. (2016). Application of Large-Scale Phase-Field Simulations in the Context of High-Performance Computing. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ’15. Springer, Cham. https://doi.org/10.1007/978-3-319-24633-8_42

Download citation

Publish with us

Policies and ethics