Skip to main content

Numerical Investigation of a Full Load Operation Point for a Low Head Propeller Turbine

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ’15

Abstract

The performance of low head turbines heavily depends on the draft tube. In the design process of hydraulic machines the geometry is often simplified, meaning gaps between runner and shroud and, if occurring, gaps at the trailing edge of the guide vanes are often neglected. The gap flow can however lead to a stabilization of the draft tube flow. In order to investigate this, a numerical analysis of a 4-blade runner with tip clearance is carried out. For the investigated operating point a full load vortex in the draft tube develops. The numerical results are evaluated against experimental measurements of integral quantities head, torque and discharge according to IEC 60 193 standard. Additionally to the investigations of the integral quantities, an evaluation of the vortex rope shape, turbulence quantities and velocity profiles in the draft tube are compared for the different numerical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bundesverband der Energie- und Wasserwirtschaft e.V.: BDEW aktualisiert Angaben zum Erzeugungsmix 2014: Erneuerbare Energien erzeugen immer mehr Strom. https://www.bdew.de/internet.nsf/id/20150306-pi-erneuerbare-energien-erzeugen-mehr-strom- de 21.April 2015 (2014)

    Google Scholar 

  2. Commission of the European Communities: Towards sustainable water management in the European Union—first stage in the implementation of the Water Framework Directive. In: 2000/60/ECCOM 2007, 128, pp. 1–13 (2000)

    Google Scholar 

  3. Egorov, Y., Menter, F.R.: Development and application of SST-SAS turbulence model the DESIDER project. In: Advances in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 97, pp. 261–270 (2008)

    Google Scholar 

  4. Egorov, Y., Menter, F.R., Cokljat, D.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: application to aerodynamic flows. J. Flow Turbul. Combust. 85(1), 139–165 (2010)

    Google Scholar 

  5. International Electrical Commission. (ed.): International standard IEC 60193 Second Edition 1999–11. Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests, Geneva (1999)

    Google Scholar 

  6. Jasak, H., Weller, H.G., Gosman, A.D.: High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Methods Fluids 31, 431–449 (1999)

    Article  Google Scholar 

  7. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  Google Scholar 

  8. Jošt, D., Škerlavaj, A., Lipej, A.: Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models. In: 26th IAHR Symposium on Hydraulic Machinery and Systems, Beijing (2012)

    Google Scholar 

  9. Kirschner. O.: Experimentelle Untersuchung des Wirbelzopfes im geraden Saugrohr einer Modellpumpturbine. Dissertation, IHS-Mitteilung 32, University of Stuttgart (2011)

    Google Scholar 

  10. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA-J. 32(8), 269–289 (1994)

    Article  Google Scholar 

  11. Menter, F.R.: Best Practise: Scale-Resolving Simulations in ANSYS CFD Version 1.0. ANSYS Germany, Darmstadt (2012)

    Google Scholar 

  12. Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. J. Flow Turbul. Combust. 85(1), 113–138 (2010)

    Article  Google Scholar 

  13. Menter, F.R., Schütze, J., Gritskevich, M.: Global vs. zonal approaches in hybrid RANS-LES turbulence modelling. In: Progress in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 117, pp. 15–28, http://link.springer.com/chapter/10.1007%2F978-3-642-31818-4_2 (2012)

    Chapter  Google Scholar 

  14. Rotta, J.C.: Turbulente Strömungen. BG Teubner, Stuttgart (1972)

    Book  Google Scholar 

  15. Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Junginger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Junginger, B., Riedelbauch, S. (2016). Numerical Investigation of a Full Load Operation Point for a Low Head Propeller Turbine. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ’15. Springer, Cham. https://doi.org/10.1007/978-3-319-24633-8_28

Download citation

Publish with us

Policies and ethics