Skip to main content

Numerical Simulation of Subsonic and Supersonic Impinging Jets

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ’15

Abstract

This report concentrates on fully turbulent confined round impinging jets with focus on heat transfer and the source mechanism of the impinging tones. Direct numerical simulations were performed with Reynolds numbers of Re = 3300 (subsonic and supersonic) and Re = 8000 (subsonic) using grid sizes of 512 × 512 × 512 respectively 1024 × 1024 × 1024 points. The transient flow field is analysed using a dynamic mode decomposition (DMD). It is shown that there is a dominant frequency with which the heat transfer at the impinging plate fluctuates. The corresponding structures are the vortex rings developing in the shear layer of the free jet region of the impinging jet. The same structures are together with the standoff shock responsible for the discrete tones referred to as impinging tones emitted by supersonic impinging jets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127, S.27–S.51 (1996). http://dx.doi.org/10.1006/jcph.1996.0156. doi:10.1006/jcph.1996.0156

    Article  MathSciNet  Google Scholar 

  2. Bogey, C., de Cacqueray, N., Bailly, C.: A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228(5), 1447–1465 (2009). http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2008.10.042. doi:http://dx.doi.org/10.1016/j.jcp.2008.10.042. ISSN 0021–9991

    Article  MathSciNet  Google Scholar 

  3. Buchlin, J.: Convective heat transfer in impinging-gas-jet arrangements. J. Appl. Fluid Mech. 4(3), 137–149 (2011)

    Google Scholar 

  4. Chung, Y.M., Luo, K.H.: Unsteady heat transfer analysis of an impinging jet. J. Heat Transf. 124(6), 1039–1048 (2002). http://dx.doi.org/10.1115/1.1469522. ISBN 0022–1481

    Article  Google Scholar 

  5. Cziesla, T., Biswas, G., Chattopadhyay, H., Mitra, N.: Large-eddy simulation of flow and heat transfer in an impinging slot jet. Int. J. Heat Fluid Flow 22(5), 500–508 (2001). http://dx.doi.org/http://dx.doi.org/10.1016/S0142-727X(01)00105-9. doi:http://dx.doi.org/10.1016/S0142--727X(01)00105--9. ISSN 0142–727X

  6. Dairay, T., Fortuné, V., Lamballais, E., Brizzi, L.-E.: Direct numerical simulation of a turbulent jet impinging on a heated wall. J. Fluid Mech. 764, 362–394 (2015). http://dx.doi.org/10.1017/jfm.2014.715. doi:10.1017/jfm.2014.715. ISSN 1469–7645

    Article  Google Scholar 

  7. Eidson, T.M., Erlebacher, G.: Implementation of a fully balanced periodic tridiagonal solver on a parallel distributed memory architecture. Concurrency Pract. Experience 7(4), S.273–S.302 (1995)

    Google Scholar 

  8. Hattori, H., Nagano, Y.: Direct numerical simulation of turbulent heat transfer in plane impinging jet. Int. J. Heat Fluid Flow 25(5), 749–758 (2004) http://dx.doi.org/http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.05.004. doi:http://dx.doi.org/10.1016/j.ijheatfluidflow.2004.05.004. ISSN 0142–727X. Selected papers from the 4th International Symposium on Turbulence Heat and Mass Transfer

    Article  Google Scholar 

  9. Henderson, B.: The connection between sound production and jet structure of the supersonic impinging jet. J. Acoust. Soc. Am. 111(2), S.735–S.747 (2002). http://dx.doi.org/http://dx.doi.org/10.1121/1.1436069. doi:http://dx.doi.org/10.1121/1.1436069

    Article  Google Scholar 

  10. Henderson, B., Powell, A.: Experiments concerning tones produced by an axisymmetric choked jet impinging on flat plates. J. Sound Vib. 168(2), S.307–S.326 (1993). http://dx.doi.org/http://dx.doi.org/10.1006/jsvi.1993.1375. doi:http://dx.doi.org/10.1006/jsvi.1993.1375. ISSN 0022–460X

    Article  Google Scholar 

  11. Ho, C.-M., Nosseir, N.S.: Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 105(4), S.119–S.142 (1981). http://dx.doi.org/10.1017/S0022112081003133. doi:10.1017/S0022112081003133. ISSN 1469–7645

    Article  Google Scholar 

  12. Hrycak, P.: Heat Transfer from Impinging Jets. A Literature Review. New Jersey Institute of Technology, Newark, NJ (1981). Forschungsbericht

    Google Scholar 

  13. Jambunathan, K., Lai, E., Moss, M., Button, B.: A review of heat transfer data for single circular jet impingement. Int. J. Heat Fluid Flow 13(2), S.106–S.115 (1992). http://dx.doi.org/http://dx.doi.org/10.1016/0142-727X(92)90017-4. doi:http://dx.doi.org/10.1016/0142--727X(92)90017--4

  14. Janetzke, T.: Experimentelle Untersuchungen zur Effizienzsteigerung von Prallkühlkonfigurationen durch dynamische Ringwirbel hoher Amplitude, TU Berlin, Dissertation (2010)

    Google Scholar 

  15. Jungho Lee, S.-J.L.: Stagnation region heat transfer of a turbulent axisymmetric jet impingement. Exp. Heat Transfer 12(2), 137–156 (1999). http://dx.doi.org/10.1080/089161599269753. doi:10.1080/089161599269753

    Article  Google Scholar 

  16. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992). http://dx.doi.org/10.1016/0021-9991(92)90324-R. doi:10.1016/0021–9991(92)90324–R

    Article  MathSciNet  MATH  Google Scholar 

  17. Panda, J.: Shock oscillation in underexpanded screeching jets. J. Fluid Mech. 363, S.173–S.198 (1998). http://dx.doi.org/10.1017/S0022112098008842. doi:10.1017/S0022112098008842. ISSN 1469–7645

    Article  Google Scholar 

  18. Pirozzoli, S., Bernardini, M., Grasso, F.: Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech. 613, 205–231 (2008). http://dx.doi.org/10.1017/S0022112008003005. doi:10.1017/S0022112008003005. ISSN 1469–7645

  19. Powell, A.: The sound-producing oscillations of round underexpanded jets impinging on normal plates. J. Acoust. Soc. Am. 83, S.515–S.533 (1988)

    Article  Google Scholar 

  20. Powell, A., Umeda, Y., Ishii, R.: Observations of the oscillation modes of choked circular jets. J. Acoust. Soc. Am. 92(5), S.2823–S.2836 (1992). http://dx.doi.org/http://dx.doi.org/10.1121/1.404398. doi:http://dx.doi.org/10.1121/1.404398

    Article  Google Scholar 

  21. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010). http://dx.doi.org/10.1017/S0022112010001217. doi:10.1017/S0022112010001217. ISSN 1469–7645

    Article  MathSciNet  Google Scholar 

  22. Schmid, P.: Application of the dynamic mode decomposition to experimental data. 50(4), 1123–1130 (2011). http://dx.doi.org/10.1007/s00348-010-0911-3. doi:10.1007/s00348–010–0911–3. ISBN 0723–4864

  23. Schmid, P.J., Sesterhenn, J.L.: Dynamic mode decomposition of numerical and experimental data. In: 61st APS meeting of American Physical Society, San Antonio, p. S.208 (2008)

    Google Scholar 

  24. Schulze, J.: Adjoint based jet-noise minimization, TU Berlin, Dissertation (2013)

    Google Scholar 

  25. Sesterhenn, J.L.: A characteristic–type formulation of the Navier–Stokes equations for high order upwind schemes. Comput. Fluids 30(1), S.37–S.67 (2001)

    Google Scholar 

  26. Sinibaldi, G., Lacagnina, G., Marino, L., Romano, G.P.: Aeroacoustics and aerodynamics of impinging supersonic jets: analysis of the screech tones. Phys. Fluids (1994-present) 25(8) (2013). http://dx.doi.org/http://dx.doi.org/10.1063/1.4819333. doi:http://dx.doi.org/10.1063/1.4819333

    Article  Google Scholar 

  27. Tam, C.K.W.: Supersonic jet noise. Annu. Rev. Fluid Mech. 27(1), 17–43 (1995). http://dx.doi.org/10.1146/annurev.fl.27.010195.000313. doi:10.1146/annurev.fl.27.010195.000313

    Article  Google Scholar 

  28. Uzun, A., Kumar, R., Hussaini, M.Y., Alvi, F.S.: Simulation of tonal noise generation by supersonic impinging jets. AIAA J. 51(7), S.1593–S.1611 (2013). http://dx.doi.org/10.2514/1.J051839. doi:10.2514/1.J051839

    Article  Google Scholar 

  29. Viskanta, R.: Heat transfer to impinging isothermal gas and flame jets. Exp. Thermal Fluid Sci. 6(2), S.111–S.134 (1993). http://dx.doi.org/http://dx.doi.org/10.1016/0894-1777(93)90022-B. doi:http://dx.doi.org/10.1016/0894--1777(93)90022--B

  30. Weigand, B., Spring, S.: Multiple jet impingement - a review. Heat Transf. Res. 42(2), S.101–S.142 (2011). ISSN 1064–2285

    Google Scholar 

  31. Wilke, R., Sesterhenn, J.L.: Direct numerical simulation of heat transfer of a round subsonic impinging jet. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design Bd. 127, pp. S.147–S.159. Springer, Berlin (2014)

    Google Scholar 

  32. Wilke, R., Sesterhenn, J.L.: Numerical simulation of impinging jets. In: High Performance Computing in Science and Engineering ‘14, pp. S.275–S.287. Springer, Berlin (2015)

    Google Scholar 

  33. Zuckerman, N., Lior, N.: Impingement heat transfer: correlations and numerical modeling. J. Heat Transf. 127(5), 544–552 (2005). http://dx.doi.org/10.1115/1.1861921. ISBN 0022–1481

    Article  Google Scholar 

Download references

Acknowledgements

The simulations were performed on the national supercomputer Cray XE6 (Hermit) and Cray XC40 (Hornet) at the High Performance Computing Center Stuttgart (HLRS) under the grant numbers GCS-NOIJ/12993 and GCS-ARSI/44027.

The authors gratefully acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) as part of collaborative research center SFB 1029 “Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wilke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wilke, R., Sesterhenn, J. (2016). Numerical Simulation of Subsonic and Supersonic Impinging Jets. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ’15. Springer, Cham. https://doi.org/10.1007/978-3-319-24633-8_23

Download citation

Publish with us

Policies and ethics